Author's Accepted Manuscript

Hydrophobic networks for advanced proton conducting membrane: Synthesis, transport properties and chemical stability

S. Magana, N. Festin, M. Fumagalli, L. Chikh, F. Gouanvé, V.H. Mareau, L. Gonon, O. Fichet, E. Espuche

DOI: http://dx.doi.org/10.1016/j.memsci.2015.07.036

S0376-7388(15)30067-3

Reference: MEMSCI13855

PII:

To appear in: Journal of Membrane Science

Received date: 7 May 2015 Revised date: 2 July 2015 Accepted date: 17 July 2015

Cite this article as: S. Magana, N. Festin, M. Fumagalli, L. Chikh, F. Gouanvé V.H. Mareau, L. Gonon, O. Fichet and E. Espuche, Hydrophobic networks fo advanced proton conducting membrane: Synthesis, transport properties an chemical stability, *Journal of Membrane Science* http://dx.doi.org/10.1016/j.memsci.2015.07.036

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Hydrophobic networks for advanced proton conducting membrane: synthesis, transport properties and chemical stability

S. Magana¹, N. Festin², M. Fumagalli³, L. Chikh², F. Gouanvé¹, V.H. Mareau³, L. Gonon³, O. Fichet², E. Espuche^{1,*}

¹ Université de Lyon, Université Lyon 1, CNRS, UMR5223, Ingénierie des Matériaux Polymères, 15 Bd. A. Latarjet, 69622 Villeurbanne, France

² Université de Cergy-Pontoise, Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI – EA 2528) – I-Mat - 5, mail Gay-Lussac, 95031 Cergy-Pontoise, France.

³ Université Grenoble Alpes, CNRS/CEA-INAC-SPrAM, 38000 Grenoble, France

*Correspondence to: E. Espuche

Abstract

The design of interpenetrated networks (IPN) membranes for fuel cell applications requires both an electrolyte and a neutral network. The composition and architecture of the latter are of major importance for the final IPN membrane properties. In this work, networks based on a fluorinated diepoxy oligomer (DFODDE) and a non-fluorinated triepoxy monomer (TMPTGE) were synthesized. The network composition was varied from 100% DFODDE to 100% TMPTGE, resulting in an increase of the crosslinking density and concomitantly a decrease of the fluorine content. The curing process was optimized to achieve a total epoxy conversion and the chemical structure of the networks was characterized by Raman and Infrared spectroscopies. The physical, thermal and chemical membrane properties were studied and discussed as a function of the crosslinking density and of the fluorine content. Increasing the crosslinking density led to a decrease of the membrane permeability to

Download English Version:

https://daneshyari.com/en/article/7020922

Download Persian Version:

https://daneshyari.com/article/7020922

<u>Daneshyari.com</u>