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ABSTRACT

Ultrafiltration is currently used for the concentration and formulation of monoclonal antibody solutions
with target protein concentrations of up to 200 g/L or higher. The filtrate flux and maximum achievable
antibody concentration in these systems is strongly influenced by the intermolecular interactions and
non-ideal behavior in these highly concentrated protein solutions. The objective of this work was to
develop a theoretical framework for analyzing the ultrafiltration of highly concentrated protein solutions
accounting for the complex thermodynamic and hydrodynamic behavior in these systems. A modified
polarization model was developed to describe the bulk mass transfer characteristics. In addition, the
model accounts for the back-filtration phenomenon that occurs at very high protein concentrations due
to the large pressure drop through the module associated with the high viscosity of the antibody so-
lutions. Model parameters were evaluated from independent data for the protein osmotic pressure,
osmotic virial coefficients, and viscosity. Model calculations demonstrate the importance of back-filtra-
tion, with numerical results in good agreement with experimental data for both the filtrate flux and
maximum achievable antibody concentration obtained in a Pellicon 3 tangential flow filtration module.
These results provide important insights into the key factors controlling the ultrafiltration behavior of
highly concentrated protein solutions as well as a framework for the design and optimization of these

ultrafiltration processes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Ultrafiltration is the most commonly used method for con-
centration and final formulation of recombinant therapeutic pro-
teins, most of which are delivered by injection [1-3]. Ultrafiltra-
tion of highly active hormones (e.g., insulin), cytokines (e.g., in-
terferon), and clotting factors (e.g., Factor VIII) is relatively
straightforward since these proteins are delivered at low to
moderate concentrations [2]. In contrast, monoclonal antibodies
need to be formulated in highly concentrated solutions (up to and
exceeding 200 g/L) to achieve the desired dosage in the limited
volumes that can be delivered by subcutaneous injection, creating
significant challenges for ultrafiltration [1].

Most theoretical descriptions of the filtrate flux in ultrafiltra-
tion systems are developed using a “stagnant film” model based
on solution of the steady-state one-dimensional diffusion equa-
tion:
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where N is the protein flux, J, is the filtrate flux (volumetric fil-
trate flow rate per unit membrane area), and C is the local protein
concentration at position y measured from the membrane surface
into the bulk solution. Eq. (1) can be integrated across the
concentration boundary layer (with thickness &) assuming that
the protein diffusion coefficient (D) is constant to give the classical
concentration polarization model for a fully retentive membrane
(i.e., Ns=0) [4]:
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where k,,=D/& is the protein mass transfer coefficient, and C,, and
Cp are the protein concentrations at the membrane surface and in
the bulk solution, respectively. A variety of expressions are avail-
able for the mass transfer coefficient in different modules [5], with
these correlations developed from experimental data (obtained
from both mass and heat transfer experiments) and from solution
of the appropriate convection-diffusion equation in a particular
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flow system (e.g., laminar flow over a flat plate).

Although, Eq. (2) often provides an accurate description of the
filtrate flux, this simple polarization model cannot be used with
highly concentrated solutions due to the assumptions of a constant
diffusion coefficient and constant viscosity, both of which neglect
the significant protein-protein interactions that occur within the
concentration polarization boundary layer. A number of different
approaches have been proposed to address the limitations of the
classical stagnant film model. For example, Aimar and Field [6]
accounted for the effects of the high viscosity of the concentrated
solution near the membrane surface by multiplying the mass
transfer coefficient in Eq. (2) by the correction factor (n,/n,,)%%’
where 77, and 7, are the viscosities evaluated using the bulk and
wall concentrations, respectively. Gekas and Hallstrom [7] used a
similar approach but with a correction factor based on the Schmidt
number, (Scy/Sc,, )°!" where Sc = ,,LD- to account for the dependence
of both the solution viscosity (#) and diffusion coefficient (D) on
the protein concentration (with p the solution density). Kozinski
and Lightfoot [8] argued that the product of the diffusion coeffi-
cient and viscosity was constant based on the Stokes-—Einstein
equation, and that this was the key parameter governing mass
transfer in a rotating disk ultrafiltration module. Zydney [9] took a
different approach by incorporating the concentration dependence
of the diffusion coefficient directly in Eq. (1), both through the
protein mobility and the use of the gradient in the chemical po-
tential (instead of the gradient in the protein concentration) for
the driving force for diffusion, although no attempt was made to
account for the concentration dependence of the viscosity.

The objective of this work was to develop a more accurate
model for the filtrate flux in the ultrafiltration of highly con-
centrated protein solutions that properly accounts for: (1) the ef-
fects of intermolecular interactions on the thermodynamic driving
force for diffusion, (2) the concentration dependence of the solu-
tion viscosity, and (3) the large parasitic pressure losses due to
flow through the tangential flow filtration (TFF) module which
can, under some circumstances, lead to back-filtration near the
device exit. The key thermodynamic (virial coefficients) and hy-
drodynamic (viscosity) properties were evaluated from in-
dependent experimental measurements using a highly purified
monoclonal antibody. The model predictions are compared with
experimental data for the ultrafiltration of the same antibody in a
linearly scalable screened TFF cassette used extensively in bio-
processing applications for final product formulation [2]. The
model is in good agreement with the experimental results, pro-
viding important additional insights into the key factors control-
ling the filtrate flux during ultrafiltration of highly concentrated
protein solutions.

2. Theoretical development
2.1. Modified polarization model

As discussed by Zydney [9], the diffusive solute flux in highly
concentrated solutions is proportional to the gradient in the che-
mical potential (x) instead of the gradient in the solute con-
centration, so that Eq. (1) becomes:
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where R is the ideal gas constant and T is the absolute tempera-
ture. The gradient in the chemical potential can be rewritten in
terms of the protein osmotic pressure (/7) as:
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where M, is the protein molecular weight. The osmotic pressure
(IT) is conveniently expressed using a virial expansion as [5]:
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where the first term is the Donnan contribution with Z the net
protein charge, m; is the molar salt concentration, and By, B, and
Bs are the osmotic virial coefficients. Eq. (5) has been truncated
after the third osmotic virial coefficient (Bs3), which is sufficient to
describe the behavior of concentrated monoclonal antibody solu-
tions up to concentrations of at least 250 g/L [10]. Note that the
analysis presented by Zydney [9] only considered the term invol-
ving the second virial coefficient without the Donnan contribution.
The diffusion coefficient in Eq. (3) is also a function of the protein
concentration due to the dependence of the protein mobility on
the local solution viscosity:
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where Dy and 79 are the diffusivity and viscosity in the limit of an
infinitely dilute solution. Note that Eq. (6) has been used pre-
viously by Kozinski and Lightfoot [7] (among others) for describing
diffusion in concentrated protein solutions; this form is also
consistent with Einstein's analysis of Brownian diffusion in terms
of the particle mobility. Egs. (4) to (6) can be substituted into Eq.
(3), with the resulting equation integrated over the concentration
boundary layer thickness (8) to give the following expression for
the filtrate flux:
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where Dy/6 is related to the mass transfer coefficient and the de-
rivative of the osmotic pressure is evaluated from Eq. (5). Eq. (7)
reduces to the classical stagnant film model (Eq. (2)) when the
solution viscosity is constant (#=#,) and the osmotic pressure is a
linear function of concentration, i.e., under conditions where there
are no intermolecular interactions. Eq. (7) can be integrated using
an appropriate relationship for the viscosity as a function of the
protein concentration; this is discussed in more detail in the
results.

The boundary layer thickness in Eq. (7) is determined by the
module geometry (e.g., channel height, spacer, module length,
etc.) as well as the device hydrodynamics (e.g., feed flow rate). In
addition, the variation in solution viscosity alters the growth of the
concentration polarization boundary layer thickness as discussed
by Aimar and Field [6]. Previous experimental and theoretical
studies have shown that the boundary layer thickness typically

depends on Sc'/® where Sc is the Schmidt number [5]. Eq. (7) was
thus rewritten as:
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where ko=Dy/6 is the mass transfer coefficient that would exist in
the absence of any non-idealities, i.e., with constant viscosity and
with dI1]/dC=constant.

There is considerable debate in the literature over the factors
that determine the wall concentration in the stagnant film model.
Some investigators have evaluated the wall concentration based
on the solubility (or “gel”) concentration for the particular protein,
while others have assumed that the wall concentration is
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