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Analysis of the contribution of electron scattering on phonons, longitudinal and flexural resistance in the nano-
tube in a longitudinal magnetic field has been carried out quantitatively. The dependence of the conductance
of the nanostructure on the nanotube radius, surface electron density, temperature, and Aharonov–Bohm
parameter in the case of an isotropic phonon spectrum and taking into account the effects of phonons
confinement has been studied.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The electron scattering process in carbon nanotubes (CNT) attracts
big research attention [1–5]. Among the most important mechanisms
contributing to electron momentum relaxation in CNT are electron–
phonon scattering, electron–electron scattering and scattering by static
impurities. Balents and Fisher have previously shown that for dominant
electron–electron interactions the resistivity behavior is linear on
temperature [2]. On the other hand the electron–phonon scattering
time increases also linearly with temperature [1,3,4], while impurity
scattering in practice has no temperature dependence. As the result,
the resistivity R vs. temperature T curves for single wall CNT is expected
to be linear for both electron–electron and electron–phonon backscat-
tering. Therefore, these two principal scatteringmechanisms can hardly
be discriminated on the basis of the R vs. T plots only. In this work we
show the possibility to discriminate between them using a careful
analysis of R vs. T curves.

Another possibility to distinguish between them can be revealed
from the analysis of magnetic field dependences [6,7]. For the ballistic
case, it was already shown [5–7] that a metal nanotube under applica-
tion of a magnetic field is becoming an insulator. This is caused by the
band gap increase with the Aharonov–Bohm parameter to a maximum
value when Φ/Φ0 = 1/2. Further increase in the magnetic flux reduces
gap width to zero atΦ/Φ0 = 1 [5–7]. Therefore, it will be important to
carry out further theoretical and experimentalwork to explore the nano-
tube resistivity dependence from Aharonov–Bohm parameter for non-
ballistic case with differentmechanisms of electron–phonon interaction.

According to the results discussed in [3,4] ballistic approximation is
valid for metallic carbon nanotubes with a length not exceeding the

order of a few micrometers. For nanotubes with larger length [8] one
of the most important scattering mechanisms should originate from
acoustic phonons. In the reference [9] for the different mechanisms of
electron scattering by acoustic phonons analytical formulas for the
conductivity of a quantum cylinder in a longitudinal magnetic field
were obtained, taking into account effects of phonon confinement.
However, quantitative analysis of the results obtained in this work has
not been completed. The purpose of this article is to quantify the
contribution of the electron–phonon scattering to conductivity of
nanostructure in dependence on the parameters of nanotubes,
temperature and magnetic field.

2. The electron–phonon scattering and conductivity of the nanotube
in a longitudinal magnetic field

The motion of an electron in an unperturbed electric field of the
problem is described by the stationary solution of the Schrödinger
equation on a cylindrical surface, with a dc magnetic field applied
along the axis. The wave functions of the steady states and the energy
spectrum are given by the formulas (Ref. [9]):

ψ n; p3ð Þ ¼ 1ffiffiffi
S

p exp inϕþ i
zp3
ℏ

h i
; ð1Þ

E n;p3ð Þ ¼ ε nþ Φ
Φ0

� �2
þ p23
2m

; ð2Þ

where m is the electron effective mass, p3 is the electron longitudinal
momentum, S = 2πRL is the surface area of a nanotube of length L and
radius R, n ∈ Z is the azimuthal quantum number, ε = ℏ2/(2mR2) is
the dimensional confinement energy, Φ = πR2H is the magnetic flux
through the cylinder cross-section, Φ0 = 2πℏc/|e| is the magnetic flux
quantum, and Φ/Φ0 is the Aharonov–Bohm parameter.
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Because we are interested in the linear response of the quantum
cylinder to an external electric field, we express the Boltzmann kinetic
equation in the relaxation time approximation as [10]

∂ f 1
∂t þ p3

m

� � ∂ f o
∂E

� �
eE3ð Þ ¼ − f 1

τ
: ð3Þ

Here, f0= f0(n,p3) is the equilibriumelectron distribution function in
the original quantum state p = (n,p3); i.e.,

f o n;p3ð Þ ¼ exp
E n; p3ð Þ−μ

T

� �
þ 1

	 
−1
ð4Þ

where f1 is a correction to the equilibrium distribution function f0, E3 is
the electric field along the cylinder axis, and μ is the chemical potential
of the electron gas in the quantum cylinder. For the relaxation
mechanism, we assume electron scattering by acoustic phonons.

Thus, the correction f1 to the equilibrium distribution function is
described by the formula

f 1 n; p3ð Þ ¼ −eð Þτ n; p3ð Þ − ∂ f o
∂E n;p3ð Þ

� �
p3
m

� �
E

3
: ð5Þ

By summing the contributions of all transverse motion energy
bands, for the longitudinal conductivity of the nanotube in themagnetic
field we obtain the formula

σ ¼ e2
X
n

Z∞
−∞

1
2π2R

� �
p3
m

� �2
τ n;p3ð Þ −∂ f 0

∂E

� �
dp3; ð6Þ

where ρ = σ−1 indicates nanotube resistance per unit length.
First, consider electron scattering in the nanotube by acoustic

phonons with an isotropic linear dispersion relation for the case in
which the deformation scattering mechanism [9,11,12] prevails. In
this case, the nanotube conductivity can be expressed as [9,12]

σ ¼
X
n;n0

σn;n0 ; ð7Þ

where

σn;n0 ¼ e2
Nn

S

m
τ n;n0� �

; ð8Þ

and the inverse relaxation time is determined by the formula

τ−1 ¼ BDm
π

1
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Here, pF(n) is the longitudinal Fermi momentum of the n-th energy
band of the electron transverse motion, which is given by

pF nð Þ ¼ 1
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pFRð Þ2− nþ Φ

Φ0

� �2
s

¼ π2RNn
S ; ð10Þ

pF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p
;EF is the Fermi energy,NS

n is thenumber of electrons in the
n-th band per unit surface area of the quantum cylinder, T is tempera-
ture, and Jn(x) is the Bessel function of the real argument.

Thus, formulas (7)–(10) solve the problem regarding the contribu-
tion of the electron–phonon scattering to the nanotube resistance in
the presence of a longitudinal magnetic field in the relaxation time

approximation for the case of an isotropic phonon spectrum. The
dependence of the nanotube conductivity on the Aharonov–Bohm
parameter and temperature is shown in Fig. 1a and b, respectively. A
change in the fractional part of the Aharonov–Bohm parameter is ac-
companied by a change of approximately 10–20% in the conductivity,
the reference value being the nanotube conductivity in the magnetic-
field-free case. For the case of an isotropic phonon spectrum, the
contribution of the electron–phonon scattering to the nanotube
resistivity depends linearly on temperature at high temperatures and
cubically at moderately low temperatures.

Next, consider electron scattering by longitudinal and flexural
acoustic phonons. Let an acoustic wave with quasi-momentum q3
along the nanotube axis and azimuthal quantum number l be excited
in the nanotube. The explicit form of the polarization vector for various
modes and of the corresponding dispersion laws for the acoustic vibra-
tions in the long-wave approximation was obtained in Refs. [5,13]. It
was shown that:

1. For an axisymmetric phonon (l=0) in the long-wave limit, electrons
interact via the deformation potential only with the longitudinal
wave, which obeys a linear dispersion law, and the interaction
amplitude is described by the formula

Γ q3;0ð Þ ¼ iq3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2d

2SρEph q3;0ð Þ

s
; ð11Þ

Eph q3;0ð Þ ¼ v q3j j: ð12Þ

Here, Ed is the deformation potential constant, ρ is the surface density
of the nanotubematerial, and v≈ 104m/s is the longitudinal acoustic
wave velocity.

2. In the long-wave approximation, where |q3|R≪ 1, electrons interact
via the deformation potential nearly only with the flexural wave,
which obeys a quadratic dispersion law,

Eph q3; l ¼ �1ð Þ ¼ vRq23; ð13Þ

Γ q3; l ¼ �1ð Þ ¼ i

R
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2d
2SρEph q3; l ¼ �1ð Þ

s
: ð14Þ

The latter result corresponds to the dispersion relation for flexural
waves in elastic rods, and the parameter v in Eq. (13) coincides with
the longitudinal acoustic wave velocity. Thus, the electron–phonon
interaction Hamiltonians with l = 0 and l = ±1 on the cylindrical
surface are given by

Hint l ¼ 0ð Þ ¼
X
q3

iq3ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2d
2Sρvjq3j

s
a q3ð Þ� � exp iq3z−iv q3j jtð Þ þ s:a: ð15Þ

Hint l ¼ �1ð Þ ¼ � exp iq3z� iϕ−ivRq23t
� �

þ s:a: ð16Þ

If only the longitudinal acoustic mode contributes to the scattering
rate, then the conductivity of the quantum cylinder can be expressed
as [9]

σ ¼
X
n

σn: ð17Þ

where

σn ¼ e2

2m
Nn

S τ pF nð ÞÞ þ τð−pF nð Þð Þ½ �; ð18Þ
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