Author's Accepted Manuscript

Analytical diffusion mechanism (ADiM) model combining specular, Knudsen and surface diffusion

Aaron W. Thornton, Afsana Ahmed, Sridhar Kumar Kannam, B.D. Todd, Mainak Majumder, Anita J. Hill

www.elsevier.com/locate/memsci

PII: S0376-7388(15)00170-2

DOI: http://dx.doi.org/10.1016/j.memsci.2015.03.004

Reference: MEMSCI13513

To appear in: Journal of Membrane Science

Received date: 3 July 2014 Revised date: 1 March 2015 Accepted date: 2 March 2015

Cite this article as: Aaron W. Thornton, Afsana Ahmed, Sridhar Kumar Kannam, B.D. Todd, Mainak Majumder, Anita J. Hill, Analytical diffusion mechanism (ADiM) model combining specular, Knudsen and surface diffusion, *Journal of Membrane Science*, http://dx.doi.org/10.1016/j.memsci.2015.03.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Analytical diffusion mechanism (ADiM) model combining specular, Knudsen and surface diffusion

Aaron W. Thornton* t , Afsana Ahmed t , Sridhar Kumar Kannam $^{\Box}$, B. D. Todd t , Mainak Majumder $^{\Delta}$ and Anita J. Hill $^{\delta}$

† CSIRO Manufacturing Flagship, New Horizons, Clayton Campus, Monash University, Victoria 3800,

Australia

‡ Department of Mathematics, Faculty of Science, Engineering and Technology, Swinburne University

of Technology, Melbourne, Victoria 3122, Australia

□ IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation

Initiative, The University of Melbourne, Victoria 3010, Australia

 Δ Nanoscale Science and Engineering Laboraties (NSEL), Department of Mechanical Engineering,

Monash University, Clayton VIC Australia 3168

♦ CSIRO Group Executive, Private Baq 10, Clayton South MDC, Victoria 3169, Australia

* Corresponding author: Aaron W. Thornton, aaron.thornton@csiro.au, telephone +61 3 9545 8018, fax +61 3 9545 2837

Abstract

We present a unified transport model that combines specular, Knudsen and surface diffusion mechanisms, termed the Analytical Diffusion Mechanism (ADiM) model. The ADiM model uniquely describes the transport behaviour of the bulk gas and adsorbed phase taking place in rough and smooth nanopores. Experiments and molecular simulations of nitrogen flow through aligned nanotube-based membranes are used to verify the model. In addition, we explore entrance effects using a suction energy mechanism that is compatible with ADiM and can accelerate gas permeance by an order of magnitude. Finally, ADiM is used to assess the effect of tube size on post-combustion carbon dioxide separation from fossil fuel plants.

keywords: diffusion, nanotube, membrane, pore, separation

1 Introduction

Ever since ultra-fast gas transport was simulated in carbon nanotubes (CNTs) [1], experimental efforts have endeavoured to create a system that operates like the Maxwell's demon concept [2],

Download English Version:

https://daneshyari.com/en/article/7021411

Download Persian Version:

https://daneshyari.com/article/7021411

<u>Daneshyari.com</u>