Author's Accepted Manuscript

Fabrication of Layered Silica-Polysulfone Mixed Matrix Substrate Membrane for Enhancing Performance of Thin-film Composite Forward Osmosis Membrane

Xiao Liu, How Yong Ng

www.elsevier.com/locate/memsci

PII: S0376-7388(15)00109-X

DOI: http://dx.doi.org/10.1016/j.memsci.2015.02.012

Reference: MEMSCI13474

To appear in: Journal of Membrane Science

Received date: 14 September 2014 Revised date: 2 February 2015 Accepted date: 8 February 2015

Cite this article as: Xiao Liu, How Yong Ng, Fabrication of Layered Silica-Polysulfone Mixed Matrix Substrate Membrane for Enhancing Performance of Thin-film Composite Forward Osmosis Membrane, *Journal of Membrane Science*, http://dx.doi.org/10.1016/j.memsci.2015.02.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication of Layered Silica-Polysulfone Mixed Matrix Substrate Membrane for Enhancing Performance of Thin-film Composite Forward Osmosis Membrane

Xiao Liu and How Yong Ng*

Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A-07-03, Singapore 117576, Singapore

*Corresponding author. Tel: +65-65164777; Fax: +65-67791635

Email: howyongng@nus.edu.sg

Abstract

In order to mitigate the internal concentration polarization (ICP) phenomenon in the forward osmosis (FO) membranes, various strategies have been proposed to modify the substrate membrane layer before a final salt-rejecting active layer is deposited on the substrate membrane surface. One such strategy is the incorporation of nano-particles to produce mixed matrix membrane. However, such modifications on the substrate membranes would likely alter their top surface morphology and this in turn, would profoundly influence the subsequent process of active layer deposition via interfacial polymerization (IP) to form the resultant Thin-Film Composite (TFC) membrane. In the current work, we have comparatively studied the substrate membrane casting processes using a conventional single blade-casting and a facile double-blade co-casting technique for flat-sheet silica-polysulfone mixed matrix substrate membrane fabrication. A series of standardized characterization techniques, including ATR-FTIR, contact angle, zeta potential, pore size distribution, FESEM and EDX have been utilized to characterize the substrate membranes and resultant TFC-FO membranes. The co-casted mixed matrix membranes were demonstrated to have a layered configuration with enhanced structural features to mitigate ICP with the impregnation of nano-sized silica, yet retain an ideal, silica free top surface for the formation of an integral and highly salt-rejecting polyamide active layer. Overall the resultant TFC-FO membranes based on the double-blade casted mixed matrix substrate membranes showed improvement in water flux J_{ν} with reduced apparent structural parameter, S

Download English Version:

https://daneshyari.com/en/article/7021506

Download Persian Version:

https://daneshyari.com/article/7021506

<u>Daneshyari.com</u>