Author's Accepted Manuscript

Modification of Nafion membrane using fluorocarbon surfactant for all vanadium redox flow battery

Xiangguo Teng, Jicui Dai, Jing Su, Geping Yin

www.elsevier.com/locate/memsci

PII: S0376-7388(14)00850-3

DOI: http://dx.doi.org/10.1016/j.memsci.2014.11.014

Reference: MEMSCI13302

To appear in: Journal of Membrane Science

Received date: 14 September 2014 Revised date: 29 October 2014 Accepted date: 8 November 2014

Cite this article as: Xiangguo Teng, Jicui Dai, Jing Su, Geping Yin, Modification of Nafion membrane using fluorocarbon surfactant for all vanadium redox flow battery, *Journal of Membrane Science*, http://dx.doi.org/10.1016/j.memsci.2014.11.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCR

Modification of Nation membrane using fluorocarbon

surfactant for all vanadium redox flow battery

Xiangguo Teng ^a, Jicui Dai ^a, Jing Su ^a, Geping Yin ^{b, *}

^a School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai

264209, P.R. China

^b School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin

150001, P.R. China

Abstract:

Fluorocarbon surfactant (potassium nonafluoro-1-butanesulfonate) is employed to prepare the

Nafion/fluorocarbon (N/FC) membranes for all vanadium redox flow battery (VRFB). N/FC

membranes with different FC surfactant mass ratios were successfully prepared by solution

casting method. The addition of FC surfactant has effectively suppressed the vanadium ions

permeability and improved the proton conductivity of Nafion. The N/FC membrane with 5 wt% of

FC surfactant (N/FC-5%) exhibits the highest ion selectivity (ratio of proton conductivity to

permeability) of 2.0×10⁶ S min cm⁻³, which is 2.1 times higher than that of pure recast Nafion

(r-Nafion) membrane $(9.7 \times 10^5 \text{ S min cm}^{-3})$. Consequently, both coulombic efficiency (CE) and

voltage efficiency (VE) of the VRFB with N/FC-5% membrane are higher than that of the VRFB

with r-Nafion membrane. The average energy efficiency (product of CE and VE) of the VRFB

with N/FC-5% membrane is 11% higher than that of the VRFB with r-Nafion at current density of

40-80 mA cm⁻².

Keywords: All vanadium redox flow battery; Nafion; Membrane; Surfactant

* Corresponding author. Tel./fax: +86 631 5687232.

Email address: yingphit@hit.edu.cn or tengxghit@163.com

- 1 -

Download English Version:

https://daneshyari.com/en/article/7021545

Download Persian Version:

https://daneshyari.com/article/7021545

<u>Daneshyari.com</u>