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a  b  s  t  r  a  c  t

This  paper  exploits  an  electrical  characteristic  of  distribution  networks  to  cast  the  state  estimation  prob-
lem into  a sparse  vector  recovery  problem.  In  distribution  networks,  voltage  differences  between  two
buses  of  each  line segment  are  much  smaller  than  the  infeed  bus  voltage.  Therefore,  the voltage  profile
signal  can  be  sparsified  with  a difference  transformation  and  recovered  from  only  a few  micro-phasor
measurement  units  (�PMUs)  using  compressive  sensing  (CS)  and  �1 regularization.  The  effectiveness  of
the proposed  algorithm  is  verified  through  the  simulation  results  of a standard  unbalanced  distribution
network,  the  IEEE  123-bus  system,  under  different  operation  conditions.  The  method  accurately  estimates
system  states  even  with  multiple  bad current  measurements.  It  also  detects,  identifies,  and  corrects  bad
voltage measurements.  In addition,  a  problem  of  binary  integer  linear  programming  is  solved  to  obtain
and optimally  place  the minimum  number  of �PMUs  necessary  to  provide  a unique  solution  for  the
proposed  state  estimation  formulation.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Literature review

The proliferation of distribution energy resources (DER) e.g.
electric vehicles, distributed generators (DGs), and demand
response necessitates visibility and situational awareness in smart
distribution networks. Unlike legacy radial networks with one-way
power flow, smart distribution networks with multiple sources
contain notable variability and uncertainties that must be con-
tinuously observed and actively managed [1]. Active management
(AM) is provided in distribution networks if a distribution man-
agement system (DMS) with various functionalities, such as state
estimation (SE), fault detection, isolation, and restoration (FDIR),
and volt/var control, are enabled for system operation. The per-
formance of several DMS  applications relies on the quality of the
state estimates provided by the distribution system state estima-
tion (DSSE) application. DSSE is a subject of several contributions
in the literature since early nineties. In [2], DSSE is formulated by
Kirchhoff’s laws and load data is estimated from statistical models.
Baran and Kelley [3] introduce the weighted least-squares (WLS)-
based DSSE algorithm whose performance relies heavily on load
allocation accuracy. In [4], they proposed an unbalanced three-
phase SE approach using branch current measurements. Lu et al.
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[5] developed a two-step current-based DSSE in which distribution
transformer loadings are forecasted first and nonlinear load flow
formulations are subsequently solved by Newton’s method. In [6,7],
the current-based DSSE is examined by decoupling the gain matrix
in the state estimation process. In [8], load allocation challenges are
discussed by implementing a state estimator in a real distribution
network.

Unlike transmission networks, supervisory control and data
acquisition (SCADA) measurements are not widely available in
distribution networks. This results in low measurement redun-
dancy and is the major obstacle for improving the quality of state
estimation in distribution networks. Most DSSE algorithms com-
plement the limited set of available real-time measurements with
pseudo-measurements, usually obtained from load forecast stud-
ies. Li [9] statistically modeled the loads based on their time-varying
characteristic and weather conditions. Ghosh et al. [10] used a non-
normal distribution of load variations to develop a probabilistic
load model. Recently, artificial intelligence (AI) methods e.g. artifi-
cial neural networks (ANNs), nonlinear autoregressive techniques,
and fuzzy logic were used to forecast the load data in DSSE algo-
rithms [11–13]. However, high uncertainties in power injection
patterns and lack of synchronization between the predicted loads
and real-time measurements limit the practical usefulness of the
load allocation methods for DSSE.

More recently, intelligent meter data have been also used to
improve the measurement redundancy and, consequently, improve
the performance of state estimators [14]. However, smart meters
(SMs) have a number of problems affecting the performance of
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DSSE methods. SMs  generally record the sampling time of their
measurements with some error. These measurements cannot be
simultaneously transmitted due to bandwidth limitations [14]. In
addition, different SMs  send their measured data to the monitor-
ing center with different time delays [15]. Therefore, SMs  often
provide unsynchronized measurements in such a way  that samp-
ling times of some measurements may  vary significantly under
some operating conditions. The error due to lack of synchronization
is compensated for by adding an error term to the measurement
device error in the WLS-based DSSE methods [14]. However, this
approach makes the SM measurements less reliable and conse-
quently affects DSSE performance. In addition, the high cost of
deploying SMs  and their corresponding infrastructures for a huge
number of nodes prevent distribution companies from making
their networks fully observable. In [16], the Hamilton cycle the-
ory is used to estimate the states in the distribution networks. It is
assumed that the magnitudes and angles of voltages and currents
are synchronously measured by smart meters in some buses of the
distribution networks.

1.2. Contribution

A more efficient and more accurate DSSE method using a
few low-cost and ultra-high-resolution micro-phasor measure-
ment units (�PMUs) is proposed here. �PMU  is a new technology
developed and certified at the University of California in collabo-
ration with the Power Standards Lab (PSL) and Lawrence Berkeley
National Lab (LBNL), funded by the U.S Department of Energy. The
device has been installed and tested in two nodes of a real distribu-
tion network and will be installed in hundreds of buses at partner
utilities [17].

This paper proposes an original application of compressive
sensing (CS) to DSSE that drastically differs from the usual WLS-
based state estimation. It is inspired by the underlying hypothesis
that voltage differences between any two buses of every line seg-
ment are small and negligible compared with the infeed point
voltage in distribution networks. Therefore, the voltage profile is
transformed to a sparse domain using a difference transformation
and is recovered from far fewer measurements than those required
for WLS  and other conventional techniques. The use of CS for distri-
bution network fault location and power system state estimation
has been presented in [18–21]. This paper extends the application
of CS to distribution system state estimation and enhances DMS
capabilities. In addition, a problem of binary integer linear pro-
gramming is solved to obtain and optimally place the minimum
number of �PMUs necessary to provide a unique solution for the
proposed state estimation formulation.

The rest of the paper is organized as follows. Section 2 presents
the state estimation equations solved by CS and �1 regularization
based techniques and proposes a bad data detection, identification,
and correction procedure. Section 3 demonstrates the simulation
results of the proposed DSSE algorithm in different operation sce-
narios. The effects of the noisy measurements, bad data, DGs, and
the meshed operation mode on the performance of the proposed
method are examined. Section 4 compares the proposed method
with other methods and discusses the advantages of our approach.
Our conclusion is presented in Section 5.

2. State estimation formulation

�PMUs measure current flows through incident branches to
buses and bus voltages synchronously [22]. The measured phasors
are expressed in terms of the system states by

Z0 = H0x0 + �0 (1)
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Fig. 1. 3-Bus distribution network.

where Z0 ∈ Rm0 , m0 = p + q, is the measurement vector including p
three-phase voltage and q three-phase current measurements, x0 ∈
Rn0 is the three-phase state vector, �0 ∈ Rm0 is the measurement
error vector. H0 ∈ Rm0×n0 is the constant measurement Jacobian
matrix

H0 =
[

II

yA + ys

]
(2)

where II ∈ Rp×n0 is the three-phase representation of the volt-
age measurement-bus incident matrix, y ∈ Rq×q is the three-phase
series admittance matrix, A ∈ Rq×n0 is the three-phase representa-
tion of current measurement-bus incident matrix, and ys ∈ Rq×n0 is
the three-phase shunt admittance matrix. For example, the equiva-
lent PI circuit of a 3-bus distribution system is shown in Fig. 1. Note
that lines 2–3 have only two  phases.where:
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If two �PMUs are installed at buses 1 and 3, we have
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