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a  b  s  t  r  a  c  t

With  larger  penetrations  of wind  power,  the  uncertainty  increases  in power  systems  operations.  The
wind  power  forecast  errors  must  be accounted  for by adapting  existing  operating  tools  or  designing  new
ones. A  switch  from  the  deterministic  framework  used  today  to a probabilistic  one  has  been  advocated.
This  two-part  paper  presents  a  framework  for risk-based  operations  of  power  systems.  This  framework
builds  on  the  operating  risk  defined  as  the probability  of the  system  to be  outside  the  stable  operation
domain,  given  probabilistic  forecasts  for the  uncertainty  (load  and  wind  power  generation  levels) and
outage  rates  of  chosen  elements  of  the  system  (generators  and  transmission  lines).  This  operating  risk
can  be  seen  as  a probabilistic  formulation  of the  N −  1 criterion.  The  stable  operation  domain  is defined  by
voltage-stability  limits,  small-signal  stability  limits,  thermal  stability  limits  and  other  operating  limits.  In
Part I  of the  paper,  a previous  method  for estimating  the operating  risk  is extended  by  using  a new  model
for the  joint  distribution  of the  uncertainty.  This  new  model  allows  for a  decrease  in computation  time  of
the method,  which  allows  for the  use of later  and  more  up-to-date  forecasts.  In Part  II, the  accuracy  and
the  computation  requirements  of  the  method  using  this  new  model  will  be  analyzed  and  compared  to the
previously  used  model  for  the  uncertainty.  The  method  developed  in this  paper  is able  to tackle  the two
challenges  associated  with  risk-based  real-time  operations:  accurately  estimating  very  low operating
risks  and  doing  so  in a very  limited  amount  of  time.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Wind power penetration levels have been increasing steadily
and are expected to continue doing so in the coming decades [1].
Larger wind power penetrations bring about new challenges in
power system operations because the assumed values of the wind
power production are not known but given by forecasts. The pro-
duction forecast errors must be accounted for and accommodated
in today’s operating tools, or new tools must be designed. Tra-
ditional, deterministic tools rely on what is called in [2] a few
“snapshots” of the power system, reflecting the expected future
operating conditions. While this has been possible when most of
the uncertainty was due to the load, relying on analyses based
on a few snapshots is not deemed appropriate anymore in power
systems with large penetrations of wind power. Consequently,
a shift from deterministic to probabilistic tools has been advo-
cated [2,3]. Probabilistic tools use probabilistic forecasts giving the
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joint probability distribution of the forecast errors of all uncertain
parameters (load, wind power production), while deterministic
tools only use a few possible values, “snapshots”, from the fore-
casts.

In deterministic approaches, the system is made ready to meet
the studied snapshots, identified as critical, in the sense that the
system must fulfil operating constraints for the given snapshots.
This is no longer possible when considering the joint probabil-
ity distribution because of two  reasons [4,5]. First, fulfilling these
operating constraints for all possible outcomes of the probabil-
ity distributions would result in large costs. Second, ensuring that
no operating constraints are violated given the probability dis-
tributions modeling the uncertainty can be impossible. For these
reasons, probabilistic tools look at the probability of violations of
the operating constraints. This probability of violation defines an
operating risk, in the terminology of [6]. Different definitions for the
operating risk can be considered depending on the task at hand. The
challenge with the probabilistic approach is the computation of the
operating risk, since the studied operating constraints typically are
nonlinear functions of the uncertain parameters (load, wind power
production) whose joint probability distribution is assumed to be
known through forecasts.
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u ∈ R
nu controllable parameters

W = [W1, . . .,  Wnw ]T ∈ R
nw random vector representing the

probabilistic forecast for all wind power injections
Wk

FWk
cumulative distribution function of Wk

fWk
probability distribution function of Wk

p = [p1, . . .,  pnl
]T ∈ R

nl random vector representing the
probabilistic forecast for all loads pk

� = [WT pT ]
T ∈ R

l stochastic system parameters
� = [uT �T ]

T
system parameters

X = [X1, . . .,  Xnw ]T multivariate Gaussian random vector,
with all Xi standard normal variables N(0,  1)

�̂ = [XT pT ]
T

stochastic system parameters in a new space
�̂ = [uT �̂T ] system parameters in a new space
qi, i = 1, . . .,  nc outage rate for contingency i
q0 = 1 −

∑nc

i=1qi probability of no outage
Fi, i = 0, . . .,  nc vector of state and power flow equations for

the pre- or post-contingency system i
hi, i = 0, . . .,  nc vector of operating limits for the pre- or post-

contingency system i
Di(u) ⊂ R

l , i = 0, . . .,  nc stable operating domain for the pre-
or post contingency i

�i(u) ⊂ R
l , i = 0, . . .,  nc Stability boundary of the pre- or post-
contingency system i (bounds Di(u))

�ij(u) jth smooth part of �i(u)
�a

ij
(u) second-order approximation of �ij(u)

dij function defining the signed distance to �a
ij
(u)

R�(u), R�̂(u), operating risk given probabilistic forecast for �
or �̂, and a given value u of the controllable param-
eters

R̂1, R̂2 approximations of the operating risk

In [7], operating risks are defined as the probabilities of violation
of transfer limits across specified bottlenecks and are estimated
using Cornish-Fisher expansions of the linearized power transfers.
In [5], the operating risks are also defined as the probabilities that
the flows on certain lines exceed the transfer limits. The power
transfers are linearized to become linear functions of the uncer-
tain parameters, and the probabilistic constraints are back-mapped
to the uncertain parameter space using these linear functions. In
[8,9], operating risks are defined as the probabilities of violation of
transfer limits and of violation of the generators’ limits. The corre-
sponding constraints are recast as second-order conic inequalities
to make them tractable, under the assumption that the uncer-
tain parameters – wind power productions – are independent and
Gaussian distributed. In [8], a data-robust algorithm is proposed
to account for non-Gaussian cases. In [10,11], the operating risk
is defined as the probability of operating the system outside the
stable operation domain. The stable operation domain is bounded
by voltage stability limits, small-signal stability limits and ther-
mal  limits. Cornish-Fisher expansions are used to estimate the
operating risk. The formulation in [11] was extended in [12,13]
in order to account for both non-Gaussian distributions of the
uncertain parameters and the correlation between them. While
the previously cited works consider only thermal stability limits,
the significant contribution of the formulation in [10–13] is that it
also considers voltage and small-signal stability limits. Addition-
ally, one single joint operating risk is defined, while other works
consider several operating risks, one per line or generator. In all pre-
viously cited work, the operating risks were used as constraints in
chance-constrained optimal power flows (CCOPF) to find the most

cost-efficient re-dispatch of participating generators while ensur-
ing low operating risks. In some work, CCOPF is called stochastic
optimal power flow [7,11] or risk limiting dispatch [6].

Two challenges arise when using an operating risk in power
system operations:

1. Secure power systems operations require a very low operating
risk, i.e. the events corresponding to not satisfying the operating
constraints are rare events. Estimating the probability of such
rare events is computationally challenging.

2. The time available for computation or estimation of the operat-
ing risk is constrained when dealing with real-time operations.
Efficient and fast methods must therefore be developed.

The operating risk as defined in [13] is estimated using approx-
imations which have been shown to be accurate in different power
systems in [10–12,14]. The computational aspects, however, have
not been studied.

In this two-part paper, the computational aspects of the method
in [13] are studied, and a new model for the joint distribution of
the forecast for wind power injections is used. This model aims at
reducing the computational time of the method to be able to use it
in real-time operations in large power systems. This model relies
on further approximations compared to [13]. The accuracy of these
approximations is investigated. The main contributions of this two-
part paper are: (1) a new computationally efficient model for the
joint distribution of the forecast for wind power injections and (2)
a study of the computational aspects of the method.

The remainder of part I is organized as follows. Section 2 intro-
duces the concept of operating risk and the definition of operating
risk used in this paper. Section 3 reviews the method used in [13]
that estimates this operating risk, and discusses its computational
requirements. Section 4 introduces a new model for the joint proba-
bility distribution of the uncertain parameters, and explains how to
integrate it in the method reviewed in Section 3. Section 5 summa-
rizes the method, and discusses the difference between the old and
the new models for the joint distribution of the uncertain parame-
ters.

2. Power systems operations under uncertainty

2.1. Operating risk

Power systems operations have relied on the N − 1 criterion
which states that the considered power systems must remain
stable after the loss of one large component (transmission line
or generator). The uncertainty faced when planning and oper-
ating power systems has typically come from the loads, whose
patterns can be forecast well [15]. For the expected load, power
systems are operated to fulfil the N − 1 criterion. The N − 1 crite-
rion takes the form of operating constraints which must be fulfilled
for the system to remain stable. These operating constraints are
differential-algebraic equations and inequalities which at steady
state can be written{

Fi(xi, yi, �) = 0, i = 0, . . .,  nc

hi(xi, yi, �) ≥ 0, i = 0, . . .,  nc

(1)

⇔ Gi(xi, yi, u, �) ≥ 0, i = 0, . . .,  nc, (2)

where the superscript i is for the base case i = 0 or any of the
nc studied post-contingency cases included in the N − 1 crite-
rion, i = 1, . . .,  nc. xi ∈ R

ns are state variables (generators’ internal
variables for example), yi ∈ R

ny are algebraic variables (typically
voltage magnitudes and angles) and � ∈ R

m are system parame-
ters. The parameters � can be divided into controllable parameters
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