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a  b  s  t  r  a  c  t

This paper  proposes  a hybrid  load  forecasting  framework  with  a new  data  preprocessing  algorithm  to
enhance  the  accuracy  of  prediction.  Bayesian  neural  network  (BNN)  is  used  to predict  the  load.  A discrete
wavelet  transform  (DWT)  decomposes  the  load  components  into  proper  levels  of resolution  determined
by  an  entropy-based  criterion.  Time  series  and  regression  analysis  are  used  to  select  the best  set of  inputs
among  the  input  candidates.  A  correlation  analysis  together  with  a neural  network  provides  an  estima-
tion  of the  predictions  for the  forecasting  outputs.  A  standardization  procedure  is  proposed  to  take  into
account  the  correlation  estimations  of the  outputs  with  their  associated  input  series.  The  preprocessing
algorithm  uses  the input  selection,  wavelet  decomposition  and  the  proposed  standardization  to provide
the  most  appropriate  inputs  for BNNs.  Genetic  Algorithm  (GA)  is  then  used  to  optimize  the  weight-
ing  coefficients  of  different  forecast  components  and  minimize  the  forecast  error.  The  performance  and
accuracy  of  the  proposed  short-term  load  forecasting  (STLF)  method  is evaluated  using  New  England  load
data.  Our  results  show  a significant  improvement  in  the  forecast  accuracy  when  compared  to  the  existing
state-of-the-art  forecasting  techniques.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Short-term load forecasting is essential for reliable and eco-
nomic operation of power systems. It is particularly more important
for deregulated power systems where the forecast inaccuracies
have significant implications for market operators, transmission
owners and market participants. An accurate load forecast results in
establishing appropriate operational practices and bidding strate-
gies as well as scheduling adequate energy transactions [1].

Load forecasting algorithms are classified into three major
categories: classical statistical techniques such as autoregressive
(AR), autoregressive moving average (ARMA), semi-parametric and
similar-day models [2–5]; computational intelligent methods such
as neural networks (NNs) [6,7] and fuzzy systems [8]; and hybrid
algorithms. The traditional statistical methods generally use lin-
ear models with limited or even no capability to characterize
the non-linearity of the load patterns. In addition, the stationary
process considered for most of these studies cannot capture the
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non-stationary features of the load time-series. Modern intelligent
methods have been proposed to avoid the inefficiencies of classical
techniques and provide a more accurate STLF. However, limitations
of the individual intelligent methods called for a hybrid of different
techniques to enhance the performance and accuracy of STLF. The
data preprocessing for the hybrid methods has been investigated
in several studies [9–18]. Ref. [9] studied different preprocessing
techniques including regression analysis, Akaike’s information cri-
terion (AIC) and correlation analysis. Although the results approved
the correlation analysis for the feature extraction, the analysis was
limited to daily and weekly periodicities without considering the
seasonality of the load patterns as well as their monthly and annual
periodicities. Ref. [10] developed a neuro-fuzzy system for STLF
in a deregulated and price-sensitive environment. A functional
time-series forecasting methodology was introduced in [11] that is
mainly based on a similar shape prediction. The proposed method
provides a reference load curve using the qualitative and quanti-
tative characteristics of the day considered for the load prediction.
The prediction is performed by means of a weighted average of past
daily load demands with load shapes similar to that of the reference
load. However, qualitative variables such as temperature and wind
speed cannot be precisely characterized because of their inherent
intermittencies and uncertainties. This questions the accuracy of

http://dx.doi.org/10.1016/j.epsr.2014.09.002
0378-7796/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.epsr.2014.09.002
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2014.09.002&domain=pdf
mailto:mghofrani@uwb.edu
dx.doi.org/10.1016/j.epsr.2014.09.002


M. Ghayekhloo et al. / Electric Power Systems Research 119 (2015) 138–148 139

the reference shape selection which is the basis of the proposed
method.

Wavelet transform has been incorporated into many hybrid
algorithms to better characterize complex load features and
improve forecasting accuracy [12–18]. Two strategies were pro-
posed in [12] to combine the discrete WT  with neural networks
and provide a hybrid forecasting algorithm. A hybrid wavelet-NN
method was employed in [13] that uses particle swarm optimiza-
tion algorithm to adjust the parameters of the network. Ref. [14]
proposed a STLF method using wavelet neural networks (WNN)
with data pre-filtering. A combination of similar day selection,
wavelet decomposition and neural networks was presented in
[15] to provide a generic hybrid framework for STLF. A multi-
wavelet transform was used in combination with a three-layer
feed-forward neural network to extract the training data and pre-
dict the load [16]. Refs. [17,18] used wavelet transforms to filter
high-frequency components of the load and reduce the computa-
tional time for training NNs. All these hybrid WNN  methods use
several networks to separately predict different components of the
load. The individual forecasts are then added up or simply com-
bined to provide the predicted load. The simplistic addition or
combination of the individual forecasts is not appropriate as differ-
ent load components have different weights and contributions in
the load prediction. None of these references includes the outputs in
their standardization procedures. Therefore, the correlation of the
predictions with their associated input series is neglected which
reduces the accuracy of the prediction. In addition, relevant infor-
mation of the load time series is not adequately captured by the data
pre-processing methods of the above-mentioned references which
call for a comprehensive framework for the input selection and data
standardization. This is particularly important for special days such
as weekends and holidays where a limited amount of training data
imposed more restriction on the accuracy of the forecast leading to
significant errors.

This paper proposes a hybrid method for STLF. A data prepro-
cessing algorithm is developed to appropriately select the BNN
inputs. The algorithm uses time series and regression analysis,
wavelet decomposition and a new standardization. The time series
and regression analysis are used to select the best set of inputs
for the load forecasting of the special days. The proposed stan-
dardization procedure provides an estimation of the predictions
for the forecasting outputs whose values are not known during the
standardization. The estimations are included in the standardiza-
tion to take into account the correlation of the outputs with their
associated input series and enhance the accuracy of the predic-
tion. Genetic algorithm (GA) is used to optimize the weighting
coefficients of different forecast components and minimize the
forecast error. This significantly improves the forecast accuracy
compared to the existing forecasting methods where the coefficient
weighting is either arbitrary or based on practical and experimental
estimates, with no attempt at optimizing their parameter values.

Section 2 explains the DWT  and BNN. It also describes the
developed data preprocessing algorithm including the input selec-
tion method, and the proposed standardization procedure. Forecast
results and their comparisons with those of the state-of-the-art
forecasting methods are given in Section 3. Conclusions are pre-
sented in Section 4.

2. Methodology

2.1. Discrete wavelet transform

Wavelet analysis is used to deal with non-stationary features
and provide a time-scale representation of electric load time-series.
The original time domain signal is decomposed into scales with

different levels of resolution to extract the irregular load informa-
tion and better characterize the load behaviour. Low- and high-pass
filters transform the load data into low- and high-frequency com-
ponents. The low-frequency component is an approximation of
the original signal representing its general trend while the high-
frequency component provides a detailed representation [13].
Generally, the discrete wavelet transform of a discrete time signal
f(k) is defined by [19]:

Dcm,n =
∑
k

f (k) m,n(k) (1)

where Dcm,n is the detail coefficient at scale m and location n; and
 m,n(k) is the detailed and translated form of the mother wavelet
 (k) =  0,0(k).

Scaling functions for a DWT  are given by:

ϕm,n(k) = (2−(m/2))ϕ(2−mk − n) (2)

The scaling function with m,  n = 0 gives the father wavelet as
ϕ(k) = ϕ0,0(k).

The approximate coefficient at scale m and location n is calcu-
lated by convoluting the scaling functions with the signal:

Acm,n =
∑
k

f (k)ϕm,n(k) (3)

The approximation (Am) and detail (Dj) of the signal at scales m
and j are obtained by:

Am =
n=+∞∑
n=−∞

Acm,n · ϕm,n (4a)

Dj =
n=+∞∑
n=−∞

Dcj,n j,n (4b)

The original signal is the sum of the approximation and details
up to scale M:

f = AM +
M∑
j=1

Dj (5)

The original signal for two consecutive scales of M = m − 1 and
M = m is calculated by (5) and given by:

f = Am−1 +
m−1∑
j=1

Dj (6a)

f = Am +
m∑
j=1

Dj = Am + Dm +
m−1∑
j=1

Dj (6b)

Comparing (6a) and (6b), we  have:

Am−1 = Am + Dm (7)

This provides a multi-resolution representation to calculate the
approximate and detail coefficients at an arbitrary scale using those
coefficients at the previous scale as:

Acm+1,n =
∑
i

hiA
c
m,2n+i =

∑
i

hi−2nA
c
m,i (8a)

Dcm+1,n =
∑
i

giA
c
m,2n+i =

∑
i

gi−2nA
c
m,i (8b)

where hi and gi are the coefficients of the low- and high-pass filters
used to decompose the signal into the low- and high-frequency
components.
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