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a  b  s  t  r  a  c  t

This  paper  presents  a new  current  injection-based  load  flow  procedure  in  which  the  Y-bus  matrix  becomes
the  main  building  block  of the  Jacobian.  Starting  from  a conventional  complex  formulation,  an  augmented
incremental  model  is developed  comprising  both  complex  and  real  unknowns,  corresponding  to  PQ
and  voltage-regulated  buses  respectively.  Then,  details  are  provided  on  the  incorporation  of  voltage
regulating  devices  (PV  buses  and tap changers)  into  the proposed  hybrid  model.  Test  results  are  presented
showing  that,  when  solution  adjustments  are  considered,  the  proposed  approach  is  competitive  with  the
conventional  power  mismatch-based  Newton’s  method,  and performs  much  better  than  sensitivity-based
schemes  usually  adopted  in combination  with  current  injection-based  load  flow  solutions.
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1. Introduction

Since the pioneering work of Tinney and others [1,2] there have
been uninterrupted efforts to develop improved load flow (LF) solu-
tion methods and related artifacts, such as the inclusion of voltage
regulating devices. The reader is referred to the excellent survey
[3] or the more recent compilation provided in [4] (Chapter 3) for
a detailed account of the power flow problem.

Load flow solution methods can be broadly classified in three
main categories: (1) General-purpose solution based on the
application of the Newton-Raphon (NR) iterative scheme to the
nonlinear power mismatch equations [1]; (2) application of the NR
scheme to the current mismatch equations [5–7]; these methods
are particularly attractive in the three-phase case [8,9] or in har-
monic load flow solutions [10,11]; (3) for strictly radial systems,
both single- and three-phase ones, it is possible to apply any of
the so-called forward/backward sweep methods [12,13]; these last
methods can be extended to weakly meshed systems by compen-
sating the radial solution [14,15], but then their original simplicity
is somewhat lost and the number of iterations tends to increase
dramatically.

Load flow tools must face the need to model the action of local
controllers, such as automatic voltage regulators associated with
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generators, shunt devices or on-load tap changers (OLTC). In its
simplest form, a local controller tries to keep a controlled quantity
as close as possible to a target value, by acting on the corresponding
control variable within its physical limits (more involved control
schemes, including deadband, hysteresis, etc. are out of the scope
of this paper).

In the load flow solution process this can be accomplished in
several ways, which can be broadly grouped in two major cate-
gories: a first one where both the state and mismatch vectors are
dynamically adapted at each iteration to account for the constraints
imposed by controlling devices, usually leading to an augmented
Jacobian. This scheme is adopted for instance to accommodate on-
load tap changers or phase shifters in the NR method [16], but also
when handling PV buses in rectangular coordinates [17,18]. The
inclusion of PV buses in the polar formulation is a notable excep-
tion, since a model reduction arises by removing the controlled
quantity from the state vector [1]. A second category arises if each
NR iteration is performed for given control settings. Then, control
variables are adjusted for the next iteration in proportion to the
residual of the respective regulated quantities, with the help of
pre-computed sensitivities or by directly using the actual gains of
the local controllers being emulated (seldom available to the load
flow user). This last approach is inherently associated with methods
using constant Jacobians [19,20], but is also common in distribu-
tion load flows [21]. As pre-computed sensitivities ignore mutual
effects, this scheme may  lead to unexpected oscillations and poor
convergence [22], particularly in distribution systems where the
interaction among nearby controllers is not negligible [23,24].
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As summarized above, polar coordinates are the preferred
choice in the power-mismatch formulation, while current-
injection methods have been systematically associated with
rectangular coordinates. In this work, a more compact, mixed
current-injection formulation is developed in which unknowns
related to PQ buses appear in complex form (voltage phasors)
whereas the necessary real unknowns (in polar coordinates) are
retained for voltage-regulated buses. This way, the major diag-
onal block of the Jacobian, corresponding to PQ buses, is simply
the respective Ybus submatrix, which remains constant throughout
the iterative process. The resulting procedure is general enough
for any type of network, but can be of particular interest for
high-voltage distribution systems, not necessarily radial, usually
containing fewer control devices in relative terms than transmis-
sion systems.

The paper is organized as follows: after the introduction, the
basic load flow formulation in complex form is reviewed in
Section 2. Then, Section 3 introduces the mixed real–complex incre-
mental model proposed in this work, including PV buses and tap
changers, while Section 4 succinctly provides the solution proce-
dure. Next, Section 5 compares the performance of the proposed
method with other well-known procedures. Finally, Section 6 sum-
marizes the main contributions of this work.

2. Load flow equations in complex form

This section is devoted to review the well-known load flow
equations and to introduce the basic notation.

2.1. Nodal network equations

Let Ub and Ib denote the vectors of bus voltage and net injected
current phasors, respectively. Then, the nodal equations can be
written as follows:

YbUb = Ib (1)

where Yb is the so-called bus admittance matrix, which is sym-
metric in absence of phase shifting transformers. When load and
generation buses are separately considered, the following parti-
tioned form arises,

YllUl + YlgUg + YloUo = Il + Isl (2)

YglUl + YggUg + YgoUo = Ig + Isg (3)

where subscripts g and l refer respectively to generation and load
buses and Uo is the slack bus voltage phasor. Notice that Ylo and
Ygo are extremely sparse column vectors (non-zero components
correspond to buses directly linked to the slack bus).

In this work, OLTC transformers will be modeled through addi-
tional shunt currents, as explained below. Therefore, in the general
case, the vector of bus injected currents can be split into the fol-
lowing two components:

• Il and Ig , representing the ‘ordinary’ currents injected by loads
and generators.

• Isl and Isg , which are the additional shunt currents injected by
transformers with off-nominal tap value.

Both current components will be separately addressed in the
sequel.

2.2. Bus constraints for loads and generators

Depending on the bus type, different nonlinear constraints apply
to Il and Ig .

Fig. 1. Tap-changer transformer model.

Fig. 2. Resulting tap-changer transformer model with constant series admittance.

B.1. Load or PQ buses
For each PQ bus the net complex power is specified while the

voltage phasor is unknown. Let Ssp
l

= Psp
l

+ jQ sp
l

be a vector com-
posed of specified complex powers for all PQ buses. Then, the
following equation in matrix form applies:

Ssp
l

= Psp
l

+ Q sp
l

j = diag(Ul)I∗
l (4)

where diag(Ul) represents a diagonal matrix composed of voltage
phasors for all PQ buses.

B.2. Generator or PV buses
The net active power Psp

g and the voltage magnitude Vsp
g are spec-

ified at PV buses, whereas the voltage angle �g and injected reactive
power Qg are unknown quantities. In matrix form, for all PV buses,

Psp
g + jQ g = diag(Ug)I∗

g (5)

with |Ug | = Vsp
g .

By replacing Il and Ig from (4) and (5) into (2) and (3), the
nonlinear load flow equations of the conventional formulation are
obtained, in complex form [4].

2.3. Additional shunt currents injected by tap changers

A generic tap-changer transformer (Fig. 1), can be modeled, as
shown in Fig. 2, by a series admittance Ycc and two  equivalent shunt
currents representing the effect of off-nominal tap values, given by:

Isp = Ycc

[
(a2 − 1)

a2
Up − (a − 1)

a
Us

]
(6)

Iss = Ycc
(a − 1)

a
Up (7)

where a is the tap value (in pu) and subscripts p and s denote the
primary and secondary buses, respectively.

Notice that both Isp and Iss are null for a = 1. Therefore, vectors
Isl and Isg , representing in (2) and (3) the additional shunt currents
injected by tap changers, will be null except for those entries cor-
responding to buses (p and s) which are incident to off-nominal tap
changers.

3. Linearized equations in complex-real form

It is well known that partial derivatives cannot be computed in
complex form in the presence of the complex conjugate operator.
For this reason, the standard NR iterative method, requiring the
computation of a Jacobian matrix, cannot be applied unless polar
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