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a  b  s  t  r  a  c  t

This  paper  discusses  the  problem  of secondary  voltage  control  in power  systems.  This  problem  is of
deep  interest  for researchers  and  engineers,  since  it imposes  serious  restrictions  to system’s  operators.
In general,  this  problem  is  resolved  by selecting  pilot  buses  representative  of a  region.  Instead,  in  this
paper,  modal  analysis  is used  to  identify  a coherent  group  of buses  to be  monitored.  The  set  of  information
collected  by  modal  analysis  is considered  by  a fuzzy  logic-based  algorithm,  so a  voltage  control  policy
is  implemented.  The  academic  IEEE  118-bus  system  is  employed  with  all  its limits  considered,  so  the
results  may  be reproduced.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Large interconnected power systems pose a complex reactive
power control problem for operators in general. Unlike the fre-
quency control, the problem of voltage control must be locally
addressed, since reactive power cannot travel far. Hence, an effec-
tive voltage control depends on the availability of generators and
synchronous condensers and tap changers.

The Secondary Voltage Control (SVC) has the purpose to con-
trol the transmission-side voltage by adjusting generator AVR
(Automatic Voltage Regulator) setpoints, synchronous compen-
sator, transformers taps, etc. [1]. The studies for application of the
SVC on power systems were firstly addressed in the late 1980s [2].
From then on, many papers have discussed and proposed different
approaches on SVC. References [3] and [4] present the results of
the SVC applied to the Spanish and Italian power systems, respec-
tively. In [5], the authors present the benefits that can be achieved
by using a coordinated secondary voltage control applied to a trans-
mission and subtransmission system of an electric power utility in
South of Brazil. A decentralized SVC methodology is employed in
[6] by using an effective adjustment at the joint line drop com-
pensator to control the voltage level in a point far from the power
plant.

In order to realize a better coordination scheme of the con-
trol elements, many papers have employed Artificial Intelligence
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(AI). The authors in [7] propose a coordinated voltage control
by using several FACTS spread over the New England system in
contingencies scenarios. A fuzzy logic approach is used to enhance a
successful coordination. Similarly, in [8], a fully decentralized SVC is
proposed by using an Artificial Neural Network (ANN) trained from
optimal power flow results. In references [9–11] AI tools to support
the decisions of the Brazilian system operators are presented. The
first uses an ANN approach while a Fuzzy Inference System (FIS) is
applied in the others.

References above drive one to conclude that an effective reac-
tive power control is obtained by adopting correct control actions.
Large power systems require extensive analysis and communica-
tion systems for this sake. This may  be overcome by subdividing
the power system into areas and subareas. In [12], two  techniques
for system reduction are proposed in order to reduce the compu-
tational burden to trace bifurcation diagrams. First, tangent vector
information is used to eliminate system variables that suffer little
changes along the bifurcation path. The second technique creates
an area formed by the buses around the critical bus. Modal anal-
ysis is used in [13] to identify coherent buses and form control
areas.

This paper proposes a new methodology for developing a sec-
ondary voltage control system that meets the voltage operating
criteria while not compromising the voltage stability margin. How-
ever, unlike the classic concept of SVC, which uses only the pilot bus
information, the methodology assembles the information about all
the load buses within a specific region of interest. For this sake,
the mode-shape analysis is used to identify subareas of control
and to provide coherent control actions information. Then, a fuzzy
inference system is established for each of the subareas based on
mode-shape information. This decentralizes the voltage control
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and enables one to visualize the most effective control actions.
Actually, the methodology proposed here follows the structure
presented in [14], which considers capacitor/reactor switching,
tap changers and adjustment of Automatic Voltage Regulators
setpoints. This paper proposes a novel approach for the lat-
ter topic and the SVC proposed is applied to the IEEE 118 bus
system.

2. Modal analysis for voltage control areas identification

The voltage stability is essentially a dynamic process. This
implies in extended transient simulations which are time consum-
ing and do not promptly provide access to sensitivity information
or voltage stability indexes. Meanwhile, due to its slow dynamic
response, static methods are suitable to approach voltage stability
information [15–17].

The modal analysis affords sufficient information for the evalua-
tion of the voltage stability. Furthermore, by an appropriate choice
of the Jacobian matrix formulation, the modal analysis can provide
the reactive power sensitivity for all the system buses, includ-
ing that with generating units. Herewith, it permits the proper
identification of coherent load buses and, accordingly, the estab-
lishment of voltage control areas, which are helpful in the definition
of the control hierarchy required for the design of a fuzzy control
system.

2.1. Extended power flow Jacobian

The traditional power flow formulation describes the power sys-
tem by a set of equations which can be written in the matrix form,
as in (1).[
�P

�Q

]
=

[
H N

M L

]
.

[
��

�V

]
(1)

where �P  and �Q represent the mismatch vectors for the active
and reactive power equations, respectively. ��  and �V  are column
vectors of the angular and magnitudes variations of the buses vol-
tages. Finally, the H, N, M and L are submatrices that form the power
flow Jacobian matrix or Jca.

The traditional Jca includes solely the reactive power equations
of the load buses in the formulation. Therefore, for further analysis,
an extended formulation of the power flow Jacobian also providing
the voltage–reactive power relationship of the generators buses is
required [13,18].

Adding the equations referred to the control devices to the tra-
ditional power flow formulation in (1), it can be rewritten as:[
�v
�y

]
=

[
Jca Jvx

Jyu Jyx

]
.

[
�u

�x

]
(2)

where �v represents the column vector on the left-side of Eq.
(1). �y  is a column vector which represents the mismatches of
the additional equations. Jca matrix is the traditional power flow
Jacobian. Jvx is a non-quadratic matrix which represents the partial
derivatives of the active power equations with respect to the new
state variables. The Jyu and Jyx matrices are the partial derivatives of
the additional equations with respect to the original state variables
and the new ones, respectively.

The extended Jacobian allows the representation of several con-
trol devices at the traditional power flow formulation [13,18,19].
The reactive power equations of the PV buses and the Swing bus
are inserted into the problem and, for each bus, a control equation
is included (represented by �y  in (2)), so the Jacobian matrix is
kept square.

2.2. Modal analysis of the extended Jacobian

Assuming the insertion of the reactive power equations of all
PV buses and the Swing bus and neglecting the control equations
in (2), the linear system can be written as:[
�P

�Q

]
=

[
JP� JPV

JQ� JQV

]
.

[
��

�V

]
(3)

where the submatrix JP� represents the partial derivatives of the
active power equations with respect to the state variable � of the PV
and PQ buses. The submatrix JPV represents the partial derivatives
of the active power equations with respect to the state variable V for
all system buses. The submatrix JQ� denotes the partial derivatives
of the reactive power equations with respect to the state variable
� of the PV and PQ buses. Finally, the submatrix JQV represents the
partial derivatives of the reactive power equations with respect to
the state variable V for all system buses, including the swing bus.

Assuming �P = 0, Eq. (3) is reduced to:

�Q  = (JQV + JQ� · −J−1
P�

· JPV ) · �V (4)

Then, it is possible to set a QV sensitivity matrix as follows:

JSQV = JQV + JQ� · −J−1
P�

· JPV (5)

The inverse matrix of JSQV gives the voltage-reactive power sen-
sitivity information. Also, given the similarity transformation, J−1

SQV
can be written by means of the right and left eigenvectors and the
system eigenvalues, leading to:

�V  = ˚.�−1.�.�Q (6)

where  ̊ and � are the right and left eigenvectors matrices, respec-
tively, and � is the eigenvalues matrix of the system.

If the eigenvalues of JSQV are sorted in an increasing order by
their magnitudes values and assuming the first eigenvalue �1 to
be meaningfully lower than the others, the voltage-reactive power
sensitivity of the system could be assessed by its right and left
eigenvectors. Accordingly, it could be written as in (7):

�V  ≈ (�1 ·  1)
�1

· �Q  (7)

where �1 is a column vector (nx1) in which its kth-element is
related to bus k and  1 is a row vector (1xn)  in which its mth-
element is related to bus m.

Eq. (7) could be expanded in a matrix form as:
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(8)

where the first index of � is related to the system buses numbers
and the second one is related to the eigenvalue �1 of the system.
Similarly, the first index of   is related to �1 and the second index
is related to the system buses numbers.

The examination of the matrix rows in (8) shows the voltage
sensitivity of a bus k with respect to the reactive power injection in
all system buses. On the other hand, the columns represent the volt-
age sensitivity of all the buses with respect to the reactive power
injection at bus m.

A  further and careful inspection of the formerly matrix pre-
sented in (8) indicates that the rows are composed by identical
elements multiplied by their corresponding right eigenvector ele-
ment. Just like the extended power flow Jacobian, the sensitivity
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