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a  b  s  t  r  a  c  t

The  study  of  low-frequency  electromechanical  modes  in  power  systems  has  experienced  much  progress
in the  past  few  years.  In this  research,  a nonstationary  recursive  least-squares  (RLS) algorithm  with
variable  forgetting  factor  is  combined  with  a Kalman  filter to simultaneously  estimate  low-frequency
electromechanical  modes  from  measured  ambient  power  system  data.  Extensions  and  generalizations
to  current  adaptive  filtering algorithms  to  account  for nonstationarity  are  implemented  and  tested  and
the correspondence  between  the  Kalman  and  RLS variables  is  examined.

Applications  of  the proposed  nonstationary  RLS  algorithm  to track  the evolving  dynamics  of  critical
power  system  electromechanical  modes  in  both,  simulated  and  measured  data,  are presented.  Com-
parison  with  other  RLS  and  least-mean  squares  algorithms  demonstrate  the  accuracy  of  the  proposed
framework  in  tracking  changes  in  modal  parameters  over  time.  The  issues  of computational  efficiency
and  memory  requirements  are  discussed  in  detail.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

There has been increasing recent interest in developing truly
adaptive techniques for tracking the time evolution of power sys-
tem’s electromechanical modes from ambient data [1–7]. Because
of the random nature of the observed oscillations, much of the
recent literature on modal identification has been based on stochas-
tic formulations [1,4–7].

Ambient oscillations are the result of complex random vari-
ations and interactions between many system components.
Measured power system ambient noise data, are known to exhibit
noisy, nonstationary fluctuations and are highly time varying due
to measurement noise, system topology changes and small magni-
tude, random changes in loads, wind and other variable generation
[3–5,8]. Ambient data, in general, are difficult to interpret and
characterize because of their inherent random characteristics. A
challenging task is to find ways to extract and characterize power
system’s electromechanical modes from highly nonstationary con-
ditions.

Many techniques have been developed to analyze ambient sys-
tem oscillations based on a variety of different criteria. These
approaches may  generally be categorized as parametric and
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nonparametric [8,9]. Parametric methods include least-squares
estimation techniques [6], robust RLS and regularized robust RLS
methods [2,3], least-mean squares adaptive filtering techniques
[4,5], canonical variate algorithms [7], sub-space system identifica-
tion (N4SID) [10], Yule-Walker algorithms [10] and Kalman filtering
[9].

A common assumption to many procedures is that ambient
noise is statistically stationary at least for a block of data [4,6,10].
Also, the parameters are assumed to be slowly time varying [11].
Standard estimation techniques, however, may  fail to consider the
effects of nonstationarity on system behavior and may  result in
numerical problems and considerable error in the frequency and
damping estimates. Recently, least-mean squares (LMS) adaptive
filtering techniques have been used to track the frequency and
damping associated with low-frequency electromechanical modes
[4,5].

A new generation of truly adaptive filtering algorithms is envi-
sioned that may  be used to improve the convergence behavior of the
standard LMS  filter. As discussed in [5], further research is needed
to reduce the variability of the mode estimates. Accounting for
stochastic and time-varying features can provide a better descrip-
tion of the observed data and result in improved modal estimation
algorithms.

In this paper, a fully nonstationary RLS algorithm with variable
forgetting factor is combined with a Kalman filter to deal with ambi-
ent system oscillations that are nonstationary in time. In contrast
to existing nonstationary RLS algorithms using constant forgetting
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factor [12], the proposed technique adaptively adjusts the size of
the forgetting factor to improve the tracking capability in time
varying parameter estimation.

Comparison with other RLS algorithms and least-mean squares
algorithms demonstrate the accuracy of the proposed procedure
on both, synthetic and measured data.

2. Recursive least-squares adaptive filtering

Ambient-based mode estimation aims at estimating low-
frequency electromechanical modes when the primary sources
of excitations to the system are random load changes of small
magnitude [4,5]. Fig. 1 shows a conceptual representation of the
identification problem using an RLS adaptive filtering algorithm.
The underlying assumption for system identification is that the
discrete-time input signal uk to the power system, can be charac-
terized by a zero-mean white noise (WN) process with variance �2

u
[4–6,13]. Further, it is assumed that only the output yk is available
for identification purposes [14].

The vectors ȳk and ŷk represent the measured outputs
from the power system, contaminated by additive (measure-
ment/observation) noise or uncertainty, vk, which is assumed to be
white noise, and the estimate of the desired (noise free) response,
respectively; subscript k refers to time. The estimation error is given
by ũk = yk − ŷk, and is also assumed to be white noise with variance
�2

u .
The central goal of such analysis is to track the evolving dynam-

ics of critical electromechanical modes present in the measured
data, yk, using a fully adaptive filtering technique. This problem has
been previously addressed using least-mean squares (LMS) adap-
tive filtering techniques [4] and ARMA models [10].

To better understand the role of the adaptive filtering tech-
nique, assume that the unknown power system model can be
adequately characterized by an all-pole model with transfer func-
tion Hk(z) = 1/Wk(z), such that Ȳ(z) = Hk(z)U(z) [15], where Wk(z)
is the characteristic polynomial of the system, Hk(z). Following
[13], let the convolution summation between the input sequence
uk and the impulse response of the system, hn, be given by ȳk =∑∞

n=−∞hnuk−n. Denoting HIk(z) = 1/Hk(z) and assuming that the
system is causal and stable, the observed data can be expressed
recursively in terms of previous measurements as

ȳk = −
∑∞

n=1
hInȳk−n + uk, with hIo = 1 (1)

On the basis of Eq. (1), it is possible to use a forward linear
predictor to form an estimate, ŷk, of the present measurement yk
as a linear combination of M past measurements as suggested in
Fig. 1. Let wk = [ −w1

k
−w2

k
· · · −wM

k
]
T

be a vector that repre-
sents the impulse response coefficients hI’s  up to an order M of the
inverse system HIk(z). The unknown coefficients wn

k
′s of the linear

predictor can be adaptively adjusted to estimate the inverse system
HIk(z) for blocks of M samples. Once the hI’s  are determined, the
poles of Hk(z) can be obtained from the polynomial of the inverse
system HIk(z), Wk(z) = [ 1 z−1 · · · z−M ] [1 wT

k−1]
T

[4,13].
Clearly, Hk(z) is rational such that the power spectral density of

the resulting process is also rational, and its shape is completely
determined by the weights wk. In this case, the z-transform of
the autocorrelation of Hk(z) is given by R(z) = Hk(z)Hk

*(1/z*) and, its

frequency spectrum is given by R(ejω) =
∣∣Hk(ejω)

∣∣2 = 1/
∣∣Wk(ejω)

∣∣2.
This result shows that the frequency spectrum of the data yk can
be calculated from Wk(ejω) by taking the Fourier transform of the
polynomial Wk(z) = 1 − w1

k
z−1. . . − wM

k
z−M . Therefore, M frequen-

cies are obtained from the weights in wk and tracked at each time
instant k.

In this research we  are interested in identifying inter-area
modes, which are in the range of 0.1–1 Hz. The order M plays an
important role in the frequency estimation. It determines the num-
ber of weights in wk to be estimated and hence the computational
complexity of the proposed algorithm. But more importantly, it
affects the quality of the spectrum estimates. If a much lower order
is selected, then the resulting spectrum will be smooth and will find
poor frequency estimate. If a much larger order is used, then the
spectrum may  contain spurious peaks or spectrum splitting [13].
The order of the system is then selected to obtain good frequency
resolution within inter-area frequency range.

Although this approach has been successfully implemented for
a wide range of applications, there are several sources of variability
in the estimation. In what follows, a novel adaptive weight-
control mechanism based on the Kalman filter is proposed. First,
the standard adaptive control mechanism based on LS theory is
reviewed.

2.1. Linear least-squares estimation

Referring back to Fig. 1, consider a set of N (N > M) noisy

measurements,
{

yk+n

}N

n=1
. Assuming that {yk+n}N

n=1 is linearly

related to wk, we  can write in matrix form, yk+N
k+1 = Ykwk + vk,

where yk+N
k+1 = [ yk+1 · · · yk+N ]T , Yk = [ yk+1 . . . yk+N ]T , yk =

[ yk−1 . . . yk−M ]T and vk =
[

vk+1 · · · vk+N

]T
; the noise com-

ponent vk is assumed to be independent of wk.
As discussed in [14], the vector yk+N

k+1 is not in the range space
of Yk because of the noise component vk. The objective is to deter-
mine an estimate ŵk for the parameter vector, wk, such that the
estimate minimizes the square of the distance between yk+N

k+1 and

Ykwk, namely min
wk

∥∥yk+N
k+1 − Ykwk

∥∥2

2
.

An alternate to this problem is obtained by minimizing a
weighted regularized least-squares cost function defined by a

Fig. 1. Stochastic system identification by using adaptive filtering.
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