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a  b  s  t  r  a  c  t

Teaching-Learning-Based  Optimization  is a rising  star  among  metaheuristic  techniques  with  highly  com-
petitive  performances.  This  technique  is  based  on  the  influence  of a teacher  on  learners.  In  this  paper,  the
Teaching-Learning-Based  Optimization  technique  is  used  to  solve  the  optimal  power  flow  problem.  In
order  to show  the effectiveness  of the  proposed  method,  it has  been  applied  to  the  standard  IEEE 30-bus
and  IEEE  118-bus  test  systems  for  different  objectives  that  reflect  the  performances  of the power  system.
Furthermore,  the obtained  results  using  the  proposed  technique  have  been  compared  to those  obtained
using  other  techniques  reported  in the  literature.  The  obtained  results  and  the  comparison  with  other
techniques  indicate  that  the  Teaching-Learning-Based  Optimization  technique  provides  effective  and
robust  high-quality  solution  when  solving  the  optimal  power  flow problem  with  different  complexities.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The optimal power flow (OPF) problem is the backbone tool for
power system operation [1,2]. The objective of the OPF problem
is to determine the optimal operating state of a power system by
optimizing a particular objective while satisfying certain operating
constraints [3].

The OPF has been studied for over half a century since the
pioneering work of Carpentier [1,2]. Earlier, many traditional
(deterministic) optimization techniques have been successfully
used, the most popular were: gradient based methods, Newton-
based method, simplex method, sequential linear programming,
sequential quadratic programming, and interior point methods. A
survey of the most commonly used conventional optimization algo-
rithms applied to solve the OPF problem is given in [4,5]. Although,
some of these deterministic techniques have excellent convergence
characteristics and many of them are widely used in the industry
however, they suffer from some shortcomings. Some of their draw-
backs are: they cannot guarantee global optimality i.e. they may
converge to local optima, they cannot readily handle binary or inte-
ger variables and finally they are developed with some theoretical
assumptions, such as convexity, differentiability, and continuity,
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among other things, which may  not be suitable for the actual OPF
conditions [5,6].

Furthermore, the rapid development of recent computa-
tional intelligence tools have motivated significant research in
the area of non-deterministic that is, heuristic, optimization
methods to solve the OPF problem in the past two  decades
[6]. Some of these techniques are: Ant Colony Optimization
(ACO), Artificial Neural Networks (ANN), Bacterial Foraging
Algorithms (BFA), Biogeography-Based Optimization (BBO), Black-
Hole-Based Optimization (BHBO), Chaos Optimization Algorithms
(COA), Differential Evolution (DE), Evolutionary Algorithms (EAs),
Electromagnetism-Like Mechanism (EM), Evolutionary Program-
ming (EP), Evolutionary Strategies (ES), Fuzzy Set Theory (FST),
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Sim-
ulated Annealing (SA), Tabu Search (TS), Gravitational Search
Algorithm (GSA). These methods are known for: their capabilities
of finding global solutions and avoid to be trapped with local ones,
their ability of fast search of large solution spaces and their ability
to account for uncertainty in some parts of the power system. A
review of many of these optimization techniques applied to solve
the OPF problem is given in [6,7].

One of the recently developed optimization techniques is the
Teaching-Learning-Based Optimization (TLBO), which is a pop-
ulation based optimization technique inspired by passing on
knowledge within a classroom environment, where learners first
acquire knowledge from teacher and then from classmates [8,9].
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The main objective of this paper is to apply the TLBO to solve the
OPF problem. The performance of the proposed technique is sought
and tested on the standard IEEE 30-bus and IEEE 118-bus test sys-
tems where the objective functions are: minimization of generation
fuel cost, voltage profile improvement, voltage stability enhance-
ment, voltage stability enhancement during contingency condition,
piecewise quadratic fuel cost curve and fuel cost minimization of
generators with valve-point loading.

The remainder of the paper is organized as follows. First, the
OPF is mathematically formulated. Then, the TLBO is presented.
Next, we apply the proposed TLBO to solve the OPF problem in
order to optimize the power system operating conditions. Finally,
we conclude our paper with some remarks and points.

2. Optimal Power Flow formulation

As mentioned earlier, OPF is a power flow problem which gives
the optimal settings of control variables for a given settings of load
by minimizing a predefined objective function such as the cost of
active power generation and under the consideration of operating
limits of the system. The OPF problem can be formulated as a non-
linear constrained optimization problem as follows:

Minimize J(x, u) (1)

Subject to g(x, u) = 0 (2)

and h(x, u) ≤ 0 (3)

where u, vector of independent variables or control variables; x,
vector of dependent variables or state variables; J(x,u), objective
function; g(x,u), set of equality constraints; h(x,u), set of inequality
constraints.

The control variables u and the state variables x of the OPF
problem are stated in (4) and (5), respectively.

2.1. Control variables

These are the set of variables which can be modified to satisfy the
load flow equations. The set of control variables in the OPF problem
formulation are:

PG, active power generation at the PV buses except at the slack
bus; VG, voltage magnitude at PV buses; T, tap settings of trans-
former; QC, shunt VAR compensation.

Hence, u can be expressed as:

uT = [PG2 · · ·PGNG
, VG1 · · ·VGNG

, QC1 · · ·QCNC
, T1· · ·TNT ] (4)

where NG,  NT and NC are the number of generators, the number
of regulating transformers and the number of VAR compensators,
respectively.

2.2. State variables

These are the set of variables which describe any unique state of
the system. The set of state variables for the OPF problem formula-
tion are:

PG1 , active power output at slack bus; VL, voltage magnitude at
PQ buses, load buses; QG, reactive power output of all generator
units; Sl, transmission line loading (or line flow).

Hence, x can be expressed as:

xT = [PG1 , VL1 · · ·VLNL
, QG1 · · ·QGNC

, Sl1 · · ·Slnl
] (5)

where, NL,  and nl are the number of load buses, and the number of
transmission lines, respectively.

2.3. Objective constraints

OPF constraints can be classified into equality and inequality
constraints, as detailed in the following sections.

2.3.1. Equality constraints
The equality constraints of the OPF reflect the physics of the

power system. The physics of the power system are represented by
the typical power flow equations. These equality constraints are as
follows.

(a) Real power constraints

PGi − PDi − Vi

NB∑
j=1

Vj[Gij cos (�ij) + Bij sin (�ij)] = 0 (6)

(b) Reactive power constraints

QGi − QDi − Vi

NB∑
j=1

Vj[Gij sin (�ij) + Bij cos (�ij)] = 0 (7)

where �ij = �i− �j, NB is the number of buses, PG is the active power
generation, QG is the reactive power generation, PD is the active
load demand, QD is the reactive load demand, Gij and Bij are the
elements of the admittance matrix (Yij− Gij + j Bij) representing the
conductance and susceptance between bus i and bus j, respectively.

2.3.2. Inequality constraints
The inequality constraints of the OPF reflect the limits on physi-

cal devices present in the power system as well as the limits created
to guarantee system security. These inequality constraints are as
follows.

(c) Generator constraints
For all generators including the slack: voltage, active and reac-

tive outputs ought to be restricted by their lower and upper
limits as follows:

Vmin
Gi
≤ VGi

≤ Vmax
Gi

, i = 1, . . .,  NG (8)

Pmin
Gi
≤ PGi

≤ Pmax
Gi

, i = 1, . . .,  NG (9)

Q min
Gi
≤ QGi

≤ Q max
Gi

, i = 1, . . .,  NG (10)

(d) Transformer constraints
Transformer tap settings ought to be restricted within their

specified lower and upper limits as follows:

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, . . .,  NT (11)

(e) Shunt VAR compensator constraints
Shunt VAR compensators must be restricted by their lower

and upper limits as follows:

Q min
Ci
≤ QGCi

≤ Q max
Ci

, i = 1, . . .,  NG (12)

(f) Security constraints
These contain the constraints of voltage magnitude at load

buses and transmission line loadings. Voltage of each load bus
must be restricted within its lower and upper operating limits.
Line flow through each transmission line ought to be restricted
by its capacity limits. These constraints can be mathematically
formulated as follows:

Vmin
Li
≤ VLi

≤ Vmax
Li

, i = 1, . . .,  NL (13)

Sli
≤ Smax

li
, i = 1, . . .,  nl (14)
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