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a  b  s  t  r  a  c  t

In  multi-agent  based  demand  response  program,  communities  and  a utility  make  decisions  independently
and  they  interact  with  each  other  with  limited  information  sharing.  This  paper  presents  the  design  of
multi-agent  based  demand  response  program  while  considering  ac network  constraints.  This  project
develops  two  types  of  information  sharing  and  iterative  decision  making  procedures  for  the  utility  and
communities  to reach  Nash  equilibrium.  The  distributed  algorithms  of decision  making  are  based  on
Lagrangian  relaxation,  duality,  and the  concept  of  upper  and  lower  bounds.  The  first  algorithm  is  subgra-
dient  iteration  based  distributed  decision  making  algorithm  and  the  second  algorithm  is based  on  lower
bound  and  upper  bound  switching.  The two  algorithms  require  different  information  flow  between  the
utility  and  communities.  With  the  adoption  of  distributed  algorithms,  the  utility  solves  optimal  power
flow  at  each  iteration  while  considering  ac  network  constraints,  and  the communities  also  conduct  opti-
mization.  Through  information  sharing,  the utility  and  the communities  update  their  decisions  until
convergence  is reached.  The  decision  making  algorithms  are  tested  against  three  test  cases:  a  distribu-
tion  network  IEEE  399  system,  two meshed  networks  (IEEE  30-bus  system  and  IEEE 300-bus  system).
Fast  convergence  is  observed  in all three  cases,  which  indicates  the feasibility  of  the  demand  response
design.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Multi-agent control has been applied in microgrid or demand
side interactions with utility [1–4]. Microgrids or demand side
make their own decisions while exchanging limited information
with the grid. For example, in [1], an optimal demand response is
designed for the demand sides to bid the amount of load shedding
as a supply function of price. The utility collects the bids from all
demand sides and update the price. In [2], the demand sides send
the utility the information on their demands, and the utility sets
the prices. The demand sides update their demand requests upon
receiving the price.

In all above mentioned references, distribution networks are
either represented in a simplified way or not represented at all.
The objective of this paper is to implement multi-agent control of
demand sides and utility while considering ac network constraints
including line flow limits and bus voltage limits.

Implementing multi-agent control requires distributed algo-
rithms. For optimization problems, there are ways to decompose
and construct distributed optimization algorithms [5]. In the field
of communication layering problems, primal decomposition, dual
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decomposition, and primal-dual decomposition can be applied
in different scenarios [6]. In power systems optimization prob-
lems, due to the decoupled cost function structure and coupled
constraints, Lagrangian relaxation based dual decomposition is
commonly used. Example applications can be found in aggregated
PHEV control considering global constraint [7], and distributed
voltage control [8].

In optimization decomposition, an original problem is separated
into a master problem along with many subproblems with small
sizes. After each subproblem is solved, the main problem is solved
adopting iterative methods such as subgradient update. Subgradi-
ent algorithm based on Lagrangian relaxation has been applied by
Luh et al for manufacturing job scheduling [9]. Zero or small duality
gap can prove that the solution is optimal or very close to opti-
mal. In game theory, iteration means each agent in the system is
exchanging information and learning to reach a Nash equilibrium.

Not all distributed algorithms have the information exchange
structure suitable for multi-agent control [10]. In this research, dis-
tributed algorithm and learning methods suitable for multi-agent
based microgrid and utility interaction will be examined.

Subgradient update based distributed algorithms are popular as
seen in the literature. One shortcoming of subgradient method is its
slow convergence speed. Scaling factors of Lagrangian multipliers
need to be updated to enhance convergence. The update is depend-
ent on specific problems. An improved Lagrangian multiplier or

0378-7796/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.epsr.2014.01.009

dx.doi.org/10.1016/j.epsr.2014.01.009
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2014.01.009&domain=pdf
mailto:linglingfan@usf.edu
dx.doi.org/10.1016/j.epsr.2014.01.009


46 V.R. Disfani et al. / Electric Power Systems Research 110 (2014) 45–54

price update scheme is presented in this paper to improve con-
vergence. In addition, this paper proposes an alternative algorithm
based on lower bound and upper bound switching to have a faster
convergence speed. The philosophy of the bound switching algo-
rithm is similar as the philosophy of Bender’s decomposition where
lower bound and upper bound are computed. Details and refine-
ment of the bound switching algorithm and the requirement of
information exchange structure for demand response program are
presented in this paper. Both algorithms are tested against multi-
ple case studies: a radial network IEEE 399 system and two meshed
networks (IEEE 30-bus system and IEEE 300-bus system).

The rest of the paper is organized as follows. Section 2 describes
Lagrangian relaxation, Lagrangian dual problem and the concept
of upper and lower bounds. Section 3 describes the decomposition
of the utility and community optimization problems and the two
demand response programs based on subgradient update and a
bound switching algorithm. Section 4 presents numerical results
and remarks. Section 5 concludes this paper.

2. Lagrangian relaxation based dual decomposition

2.1. Lagrangian relaxation

An optimization problem is generally defined as

f ∗
0 = f0(x∗) = min

x
f0(x)

subject to fi(x) ≤ 0 1 ≤ i ≤ m

hj(x) = 0 1 ≤ j ≤ p

(1)

where x∗ is the optimal solution of the decision variable vector x.
f0(x) is the objective function. fi(x) is an inequality constraint and
hj(x) is an equality constraint.

Lagrangian relaxation technique relaxes the minimization prob-
lem by transferring constraints to objective function in the form of
weighted sum as shown in (2).

L(x; �, �) = f0(x) +
m∑

i=1

�ifi(x) +
p∑

j=1

�ihj(x) (2)

where �i and �i are Lagrangian multipliers or weights. �i should
be greater or equal to zero.

Considering the Langrange dual function, g(�, �), as the greatest
lower bound of L(x ; �, �), the Lagrange dual problem is defined as
(3).

g∗ = max
{�,�}

g(�, �) = max
{�,�}

{infx L(x; �, �)} (3)

According to the weak duality theorem, for any feasible solution
(�, �) of the dual problem (3) and any feasible solution x of the
original problem (1), the following relationship is true.

g(�, �) ≤ g∗ ≤ f0(x∗) ≤ f0(x) ∀� ∈ R
m
+ , � ∈ R

p (4)

Therefore, any feasible solution of the dual problem can result
in a lower bound of the optimal value of the original problem (1).

2.2. Lower bound, upper bound, and gap

The definition of the upperbound (UB) and lowerbound (LB)
must guarantee that UB ≥ f ∗

0 and LB ≤ f ∗
0 , respectively.

Indicated from the previous subsection, the cost corresponding
to any feasible solution for the dual problem (3) is a Lower Bound.

On the other hand, since the optimal solution x∗ for original
problem (1) leads to the minimum cost, the resulting cost of any
feasible solution x is an Upper Bound.

The difference between an upper bound and a lower bound
which indicates the efficiency of the solution sought is called Dual-
ity Gap or Gap. (Gap=UB–LB).

3. System model and algorithms

Consider a power network consisting of a set N of buses and a set
B of branches. The utility is responsible to operate the power grid, its
generation units and transactions with transmission systems. Some
community microgrids are connected to the network and behave
as autonomous agents. The connected buses belong to a set A. The
buses that belong to utility belong to a set N − A.

The communities share with the utility only limited informa-
tion, which implies the following situations:

• Due to privacy issues, a community does not fully share informa-
tion to the grid.

• Due to computing burden, the energy management center of a
utility has no ability to collect every piece of information from
customers. Instead, it is more feasible to have aggregated loads.

• The utility and the communities all behave as autonomous agents.

3.1. Lagrange relaxation and decomposition of optimal power
flow problems

Optimal Power Flow (OPF), the well-known problem in power
system operation, is defined in (5). It is obvious that an AC OPF takes
care of not only active and reactive power balance constraints but
also the other constraints such as voltage constraints, power line
capacities, maximum and minimum limits of generators, etc.

min
∑
i∈N

Ci(Pgi
)

subject to ∀i ∈ N, ∀j ∈ B

Pgi
− PLi

− Pi(V, �) = 0

Qgi
− QLi

− Qi(V, �) = 0

Vm
i

≤ Vi ≤ VM
i

Pm
gi

≤ Pgi
≤ PM

gi

Q m
gi

≤ Qgi
≤ Q M

gi

Sj(V, �) − SM
j

≤ 0

(5)

where C(·) is the cost function, superscripts M and m denote upper
and low bounds. Subscript i refers to the variables corresponding
to bus i. Pg, Qg, PL and QL are the vectors of bus real and reactive
power injection, and real and reactive loads. P(V, �) and Q(V, �) are
the power injection expressions in terms of bus voltage magnitude
and phase angles. S(V, �) is the vector of line complex power flow.

Let us define two  subscripts ( · )impi
and ( · )expi

which are used
in Fig. 1. The subscript ( · )impi

denotes the utility’s power import
from a community connected to bus i while ( · )expi

denotes the
same community’s power export to utility. Hereafter in the paper,
the community connected to bus i will be called community i for
simplicity. In order to meet the power balance constraint, (6) must
be fulfilled for all i ∈ A.

Pimpi
= Pexpi

Qimpi
= Qexpi

(6)

In order to decompose the OPF problem between utility and
communities, joint constraints (6) can be relaxed using Lagrange
relaxation. In both utility’s and communities’ optimization prob-
lems, these constraints are not considered explicitly, but rather are
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