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a  b  s  t  r  a  c  t

This paper  proposes  a technique  for classifying  partial  discharge  (PD)  patterns  based  on  ensemble  neu-
ral network  (ENN)  learning.  The  ENN  technique  is  based  on  training  a  number  of  neural  network  (NN)
models  with  statistical  parameters  from  PD  patterns  and combining  their  predictions.  In  this  paper,  six
constituent  NN models  form  the  ensemble.  Combining  the  outputs  of  the  constituent  NNs  through  an
aggregating  unit  using  dynamically  weighted  averaging  strategy  gives  a  final  evaluation  of  PD  patterns
in  relation  to  a range  of  PD  fault  types.  Using  the  data  sets  of measured  PD  patterns  as the  system  input
fingerprints,  the  classification  performance  of  the  ENN  has  been  compared  statistically  and  quantitatively
with  a single  neural  network  (SNN).  This  is achieved  through  evaluating  the  average,  variance  and  stan-
dard  error  of the  means  of  ENN  and  SNN recognition  performances  over  100  different  initial  states  of  the
NNs  thus  providing  an  effective  comparison  to  be  made.  The  result  shows  that  the  ENN  appears  to be
more  robust  with  statistically  improved  performance  in  recognizing  untrained  PD patterns  for  a  number
of  PD  fault  geometries.
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1. Introduction

Localized partial discharge (PD) often occurs within high volt-
age (HV) systems when insulation materials start to degrade under
conditions of high electrical stress [1]. Once PD initiates, it becomes

∗ Corresponding author. Tel.: +44 7552803112.
E-mail addresses: abdullahi.masud@gmail.com (A. Abubakar Mas’ud),

b.stewart@gcu.ac.uk (B.G. Stewart), scott.mcmeekin@gcu.ac.uk (S.G. McMeekin).

a driver of further insulation degradation, which may  ultimately
lead to complete breakdown or failure of HV equipment. It is there-
fore important that PD activity is monitored and trended so that
decision on the state of the insulation can be made. PD pulses
are normally measured over individual power cycles with both
the magnitude of the discharge (normally the apparent charge (i.e.
IEC60270 Standard [2])) and the phase of occurrence being cap-
tured by digital systems. From these measurements often ϕ–q–n
(phase–amplitude–number) patterns are produced as a means of
diagnosis, e.g., [3]. As different insulation fault mechanisms and

0378-7796/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.epsr.2014.01.010

dx.doi.org/10.1016/j.epsr.2014.01.010
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2014.01.010&domain=pdf
mailto:abdullahi.masud@gmail.com
mailto:b.stewart@gcu.ac.uk
mailto:scott.mcmeekin@gcu.ac.uk
dx.doi.org/10.1016/j.epsr.2014.01.010


A. Abubakar Mas’ud et al. / Electric Power Systems Research 110 (2014) 154–162 155

fault geometries produce different ϕ–q–n patterns it is therefore
possible to determine from these patterns the nature of the fault,
e.g., void, corona, surface discharges, etc. On this basis several
approaches and classification techniques have gradually appeared
for automatic recognition in order to exclude the need for expe-
rienced operators to interpret fault patterns. One of the most
common automated approaches for PD monitoring is the neural
network (NN), e.g., [3–6].

The NN has been extensively applied for classifying complex
stochastic PD patterns because of its ability to learn from a few
trained fault examples [3,6]. However, the fundamental issue in
NN learning and classification is generalization, i.e. the poten-
tial of the NN to function reliably well for some unknown or
unseen PD data. Many NN topology algorithms have been applied
for PD classification and these include: the back-propagation (BP)
algorithm [3,5–7]; the Kohonen self-organizing map  and learning
vector quantization [3]; modular neural networks [8]; adaptive
resonance theory [9]; the counter propagation NN [10]; hid-
den Markov models [11]; fuzzy logic controllers [12] and more
recently the probabilistic neural network [13]. These methods have
produced recognition performances of more than 90% when test-
ing has been performed on some unseen PD data set. However,
generalization of patterns remains an issue for these NN imple-
mentations.

In an attempt to improve the situation, this paper aims at
developing an ensemble neural network (ENN) for classifying PD
patterns. ENNs have not, until recently, been considered for PD
fault classification. The inspiration for ENN methods is based on the
premise that by combining the prediction of several individual NN
models, the generalization error of the widely applied single neural
network (SNN) might be improved. It has been shown that this is
only possible if constituent NNs in the ensemble are concurrently
diverse and accurate [14]. Some recent research within the field of
PD has shown improved recognition performance of an ENN over
an SNN for a few selected PD fault geometries e.g., [15–17]. How-
ever, the ability of an ENN to classify a collection of well-known
insulation PD fault types has not yet been widely explored or effec-
tively quantitatively assessed in relation to SNN performance. Such
an investigation forms the basis of this paper.

The normal practice for PD NN methods is for statistical mea-
sures of ϕ–q–n patterns to form the training and testing fingerprints
to the networks. However, one drawback of the SNN for PD clas-
sification is the trial and error approach in choosing initial states
(i.e., weights and biases) as different initial states produce different
performance evaluations. To establish a truly effective ENN pre-
diction scheme, a certified level of statistical confidence is thus
required based on different initial state assignments. In order to
understand and compare the general performances of an ENN and
SNN in this regard, this paper calculates the averages, variances
and standard errors of the mean (SEM) of the recognition rates as a
function of varying the initial weights and biases of the networks.
Some previous work has attempted to establish error tolerances
on selected statistical ϕ–q–n parameters for SNN investigations
[3]. However, these evaluations were of limited application and
restricted in experimental scope to a selected number of fault
geometries. Therefore, as a further contribution to the field of PD,
this paper provides an associated quantitative statistical compar-
ison of the ENN and SNN recognition and discrimination rates
for several well-established PD faults as well as some less known
NN evaluated fault geometries. The PD faults investigated include
corona in air, corona in oil, oil and air surface discharges, voids in
insulation and an electrode bounded cavity. For these fault geome-
tries, laboratory ϕ–q–n data captures over extended testing periods
have been obtained for the evaluations. These extended data sets
are then applied for both training and testing the SNN and ENN
developed within this work.

The paper is organized as follows. Section 2 presents the
experimental test geometries and summarizes the statistical input
parameters used for the SNN and ENN. Section 3 summarizes the
background theory of ENNs; Section 4 outlines the training strategy
and development of the SNN and ENN models employed within this
work; Section 5 evaluates and compares the quantitative ENN and
SNN performance discrimination capabilities and discusses some of
the implications of the work to the field of PD. Section 6 summarizes
the conclusions of the paper.

2. Experimental set-up and input parameters for the SNN
and ENN

2.1. The PD measurement

Measurements of PD were made using an optically isolated
wide-band PD detection system based on the IEC 60270 Standard
[2], designed and built at Glasgow Caledonian University. The mea-
surement system transmits separately the wideband IEC 60270
detected PD impulse and the synchronized measured power cycle
over optical fibre to optical electrical receivers to provide isolation
of the measurement system from the high voltage environment.
The receiver system software measures the apparent charge from
the peak of the impulse signal and generates ϕ–q–n patterns over
specified time intervals which can be stored for future analysis.

2.2. PD fault geometries

PD fingerprints required for fault recognition are normally
obtained under laboratory conditions by means of specially man-
ufactured PD fault model geometries. In this work, six PD fault
geometries have been constructed and are described below. The
first four geometries have previously been evaluated in the litera-
ture for SNNs e.g., [3,16,17]. The last two have not previously been
evaluated in NN investigations.

(1) Corona in oil

This is produced by a point-plane configuration immersed in
Castrol insulating oil [18] (see Fig. 1a). Measurements were carried
out at 28 kV for a period of 2 h and the point needle placed at a
distance of 25 mm from a solid ground plane. Changing gap distance
has minimal effect on the ϕ–q–n behaviour for oil corona discharges
e.g., [19].

(2) Surface discharge in air

This fault type was  produced by placing a small brass conductor
ball of 55 mm  diameter onto Perspex insulation as shown in Fig. 1b.
Measurements were conducted at approximately 5 kV and the Per-
spex was  stressed continuously for 4 h, up to the level of its initial
stage of degradation, i.e. when chemical particles appeared on the
Perspex surface.

(3) Single void in PET

A single void of 0.6 mm diameter was  created as an artificial
cylindrical void in the centre layer of a nine layer poly-ethylene-
terephthalate (PET) sample as shown in Fig. 1c. Each layer was
50 �m in thickness. One layer of PET was  attached to the top and
bottom electrodes using epoxy while the remaining seven PET
layers were compressed between the two electrodes. All measure-
ments were taken at 3.6 kV and PD data captured from the start of
the test up to 7 h at which point some degradation of the insulation
had started. To ensure reliability of the manufacture process of the
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