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In this paper, the determination of critical loadability points of the power flow equations is formulated
as an optimisation problem. A quadratic parameterisation scheme is used to model the load change,
which is equivalent to implicitly including a non-negativity constraint in the load variation. The power
flow equations are expressed in rectangular coordinates. This is suitable to exploit the second order
information (tensor term) of the equations representing the optimality conditions. The use of this term
improves the convergence of the iterative process and facilitates the manipulation of the reactive power
generation limits. Simulation results obtained with a number of power systems, including real networks,
are used to illustrate the main features of the proposed methodology.
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1. Introduction

Several aspects of voltage instability have been explained by
the Bifurcation Theory of nonlinear systems. In particular, two
types of local bifurcations have been frequently associated with
the steady state aspects of the voltage collapse [1,2]. The first is
the saddle-node bifurcation, in which the Jacobian matrix of the
differential-algebraic equations representing the power system
is singular [3,4]. The second, named limit-induced bifurcation, is
related to changes in the stability condition, as a consequence of
a particular variable reaching its limit. In the present work, the
power flow solution corresponding to the maximum (here also
referred to as critical) loadability is characterised as a saddle-node
bifurcation point (also named limit point, fold point and turning
point). Although very interesting from the practical point of view
of power system stability, other types of bifurcation are not focused
on here.

A number of methods for determining the critical loadability
point can be found in the literature. Continuation methods have
been widely used to determine a sequence of solutions for the
parameterised power flow equations from a base load to the point
of maximum loadability [5-7]. A predictor-corrector strategy is
applied to calculate the set of equilibrium points that compose
the PV-curve of each bus. Additionally, the predictor tangent vec-
tor is obtained as a by-product of the computational process, with
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reduced computational effort through the use of the techniques
presented in [8]. Direct methods determine the saddle-node bifur-
cation point in one step, providing simultaneously the right or left
eigenvectors of the singular power flow Jacobian matrix. Some
of the relevant approaches found in the literature are mentioned
as follows. In [9], an optimisation problem is solved by Newton'’s
method, in which (without loss of generality) the active power level
is constant, such that only the QV subproblem is solved. In [7,10],
the set of equations representing the Transversality Conditions are
extended to integrate HVDC links, area interchange power control
and other power systems particularities. The resulting set of non-
linear equations is solved to provide the so-called Point of Collapse.
Refs. [11,12] propose direct methods to compute the saddle-node
bifurcation point closest to the base case in the load parameter
space. These methods combine the computation of both the load
power margin and the vector normal to the limit surface of the
feasible region of the power flow equations. They can provide the
saddle-node bifurcation pointin a fixed direction of load increase as
well as the bifurcation point locally closest to the current operating
load level. Ref. [13] proposes the determination of the loadability
margin by solving the Moore-Spence augmented system. Its major
contribution is the application of a matrix decomposition strategy
to speed up the computational process. Ref. [14] combines the Con-
tinuation method with optimisation techniques to detect the limit
of solvability of the power flow equations. A least squares tech-
nique is used to calculate the Lagrange multipliers, which are used
as a figure of merit to find the power flow solvability limit. More
recently, Yang et al.[15] proposes the use of block elimination tech-
niques to solve the Moore-Spence augmented system. Similarly
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to [13], the contribution of this approach is related to the imple-
mentation aspects. The similarities and differences between these
methodologies concern five main points: (1) the analytical formula-
tion, (2) the type of load parameterisation, (3) the solution method,
(4) the initial estimates, and (5) the by-products of the compu-
tation. First, the sets of equations solved to calculate fold points
are basically those which represent alternatively the Transversality
Conditions [7,12] the Moore-Spence determining system [13,15],
or the optimality conditions of the maximum loadability optimi-
sation problem [9]. In case of the optimisation model, adequate
assumptions must be taken into account in order to obtain fold
points similar to those produced by Continuation methods. Except
for this aspect there are no considerable differences between these
models. Second, with respect to the parameterisation, all of these
methodologies have used the linear power load parameterisation
to model the load increase. Unless a non-negativity constraint on
the load parameter is added to the formulation, there is a risk
of determining undesirable critical loadability solutions with load
decrease (negative load parameter), if the initial estimate is not
well chosen. Referring to the solution method, due to the partic-
ular structure and features of the maximum loadability problem,
all of these approaches apply Newton’s method to solve the set of
nonlinear equations that provide the fold point. This method is well
defined and quadratically (although only locally) convergent. It is
efficient to deal with equality and inequality constraints [9], but
requires a good initial estimate. For this purpose, strategies like
iterations of the Inverse Power Method have been used in [7,10],
information about the largest eigenvalue of the Jacobian matrix
available in the current operating point is employed in [11,12] and
the Continuation method is applied in [13-15] to provide the ini-
tial guesses for power flow variables and eigenvectors. From this
point of view, the exception is the approach presented in [9], which
claims no need for the solution of any separate system to obtain
improved initial estimates. The numerical results obtained through
the application of these direct methods include the fold point and
the sensitivity relationships represented by the eigenvectors and
Lagrange multipliers, which are used to define critical buses and
areas.

The maximum loadability problem can be also formulated as
a general Optimal Power Flow problem, as in [16,17], for example.
The analytical models used in these approaches include other types
of operational constraints (voltage magnitude, power flows, etc.)
and optimisation variables (generated active and reactive powers,
transformer taps, etc.). This brings additional difficulties (in terms
of size and complexity of the problem) to obtain critical solutions
and requires different numerical methods to solve the optimi-
sation problem (as Interior Point Methods and/or Trust Region
based-methods, for example). The maximum loadability solutions
produced through the application of these methodologies is com-
pletely different from those focused on the present work. For this
reason this type of approach is out of the scope of this paper.

The present paper proposes a methodology for the direct deter-
mination of the turning points of the power flow equations. This
is formulated as a constrained static optimisation problem, which
is solved by an extended version of Newton’s method. For this
purpose, the power flow equations are expressed in rectangular
coordinates. The main contributions reported here are: (a) the use
of an alternative load parameterisation scheme to model the load
variation, so as to ensure power flow solutions with load level
greater than that of the base case; (b) the inclusion of the second-
order information (tensor component) in the search direction, to
improve the robustness of the iterative process and facilitate the
treatment of the reactive power generation limits. The proposed
approach differs from those previously mentioned with respect to:
(1) the type of load parameterisation, (2) the strategy to solve the
optimisation problem, which is an extension of Newton’s method

to exploit the second-order information. Similarly to [9], there is
no need of any special strategy to choose initial guesses for the
Lagrange multipliers, although we also show two alternative proce-
dures to compute the initial estimates of the Lagrange multipliers.
Numerical results obtained for power systems with sizes ranging
from 24 to 1916 buses are used to illustrate the proposed method-
ology.

This paper is organised as follows. Section 2 describes the the-
oretical basis of the maximum loadability problem, including the
solution through static optimisation algorithms. Section 3 presents
the analytical model proposed herein, with emphasis on the use of
the information conveyed by the tensor term. Section 4 presents the
numerical results obtained from the application of the methodol-
ogy proposed here and Section 5 summarises the main conclusions.

2. Preliminary concepts

The determination of the power flow solution at the maximum
loadability level can be formulated as an optimisation problem
expressed in terms of power system variables as:

Maximize P
subject to (Pgi + P> APg) — (PS + p? APy) — Pi(e, f) =

Q) - (Q,z + P2 AQq) - Qile, f) =
V.’ef2 =e2 +f? (PVbuses)

—(QéJ +P*AQq) +Qile, f) < Qg”" (PV buses)

0 (PV, PQbuses)
0 (PQbuses) (1)

where PO and Qg are the active and reactive power generation of
busiin the base case and APg, represents the active power genera-
tion change rate, which indicates how the active power generation
follows the increase of the loadability level (distribution factors
based on economic and/or security criteria can be used for this pur-
pose); Pgi and Qt?i refer to the active and reactive power demand

of the ith bus in the base case, APy, and AQy, represent the pre-
specified direction of increase of the active and reactive power load
of bus i, Viref is the reference voltage magnitude of the ith PV bus,
and P;(e, f) and Q;(e, f) are the nodal active and reactive power injec-
tions expressed as functions of the real and imaginary components
of complex voltages. The inequality constraints refer to limits of
generated reactive power of the PV buses. The optimisation vari-
ables are the components of the complex voltage (e;, f;) and the load
parameter p.

If the conventional linear parameterisation is used to model the
load variation and a non-negativity constraint is not imposed on p,
the optimisation problem of Eq. (1) can provide undesirable critical
solutions (with negative loading factor, for example), which are
useless from the practical point of view. This is usually due to a
poor initial estimate of the optimisation variables, in particular the
Lagrange multipliers. In order to overcome this difficulty, the load
change is quadratically parameterised, as shown in Eq. (1). This
type of parameterisation is equivalent to imposing a non-negativity
constraint in the load variation.

The constraints of the optimisation problem of Eq. (1) are
expressed in compact form as:

g(X,0) = Yo+p°r—go(x)=0

lim (2)
hg (X, p) = Vg, +P’Tg; —ho(X) < hy;
where the components of vectors (yg + p%r) and (¥g, + pzrqg) are
related to the bus power injections, the squared voltage magni-
tude of the PV buses in the base case (yo and y ) and the load
increase direction (r and rgg ). Since the PV bus voltage magnitude
does not depend on the load variation (see the third equality con-
straint in Eq. (1)), the components of the vector r corresponding to
the squared voltage magnitudes are zero. Vectors go(x) and hg(x)
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