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a  b  s  t  r  a  c  t

This paper  presents  an  accurate  method  to evaluate  the  capacitances  of  multi-conductor  power  cables.
The  method  developed  can  also  be  applied  to  cables  presenting  multilayer  dielectrics.  Strips  of  charge  are
used  to  represent  the  electric  charge  distribution  on conductors’  surface,  as  well  as  to characterize  the
polarization  charge  distribution  on  interfaces  separating  two different  dielectrics.  The  advantage  of using
strips  of charge  is to  preserve  charge  continuity  along  conductor  surfaces  and  dielectric  interfaces.  This
methodology  is  accurate  since  the proximity  effects  among  conductors  are  taken  into  account.  Validation
of the  method  is performed  comparing  experimental,  other  software  and analytical  results  with  those
obtained  by  using  the  proposed  numerical  method.  A cylindrical  non-concentric  capacitor  is  used  for the
analytical  validation  and  a three-phase  power  cable  is used  on  experimental  tests.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents an accurate method to evaluate the capac-
itances of multi-conductor power cables. The method can be
extended to cables presenting multi-layered dielectrics.

Longitudinal impedances and transversal admittances of power
transmission lines, either overhead or underground, in the fre-
quency domain, have to be determined more and more accurately
in order to attain efficient and rigorous simulations [1,2]. Ana-
lytical solutions can be applied if simple physical systems are
present [3–7]. For a general case, where the geometry has a com-
plex configuration or the material electromagnetic properties have
heterogeneities, anisotropies or even non-linearity, it is not suit-
able to use analytical solutions. In such cases, numerical methods
must be applied. The most important numerical methods [8] have
been the Finite Difference Method, the Finite Element Method [9],
the Boundary Element Method [10,11], the Method of Moments
(MoM)  [12–15], the Charge Simulation method (CSM) [16,17] and
the Optimized Charge Simulation Method (OCSM) [18,19].

In this paper, a 2D electrostatic field problem is considered. The
MoM  is developed where the integral operator has, in this case,
the form of a surface integral which is inherent to the presence of
surface electric charge distributions. The MoM  leads to identical
formulation as the CSM. The version proposed in this paper takes
the equivalent charges on the conductor surfaces with the form of
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strip charges instead of line charges located somewhere inside the
conductors as done in a typical CSM. In [13], as well a MoM  approach
is used to deal with finite length coaxial cables in the proximity of
a conductor plane but where proximity effect is neglected assum-
ing uniform charge densities along each element interface. In this
paper, a 2D approach is used to deal with infinitely long cables
where proximity effect is considered. For this aim, strips of charges
are used to represent the electric charge distribution on conduc-
tors’ surface as well as to characterize the polarization equivalent
charge distribution on the separation surface between two  different
dielectric regions.

In this way, the method developed in the paper is appropriate
to deal with linear and isotropic dielectric media, the permittivity
being considered as a real parameter, but where heterogeneities,
resulting from the presence of interfaces separating homogeneous
regions, may  be taken into account.

The point-matching technique is applied in the MoM  [12],
meaning that Dirac’s functions are used for the weighting func-
tions [12] and, on the other hand, linear approximations or triangle
functions are used for the sub-sectional basis functions instead of
pulse functions adopted in the typical applications of the MoM  [12].
This means that strip charges are approximated to a linear varia-
tion along the strip width. This approximation has the form of a
linear combination of the charge surface density on the edges of
the strips taken as discretization nodes in the 2D description of
the problem. The charge surface density in each node is evaluated
imposing boundary condition in the Dirichlet form (imposing the
electric potential) on the conductor surface. As a consequence of
the equivalent charge location, singularities must appear in the
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Fig. 1. Representation of the strip of charge concept: (a) representation of one strip
of  charge into which the conductor surface is subdivided. The conductor surface
cross section, obtained using a plane orthogonal to the conductor axis is represented
by a dashed line; (b) the conductor surface cross section (dashed line) is approxi-
mated to a circumscribed polygon (solid line). One side of the polygon is represented
in  (a) as the cross section of the strip of charge.

integrand functions. In the paper, those singularities are treated
analytically.

The method is validated by comparing numerical results with
other software, analytical and experimental ones [20]. A cylindrical
non-concentric capacitor is used for the analytical validation. For
experimental tests, a three-phase power cable is used.

Section 2 deals with the description of the method, first for con-
ductors inside a homogeneous dielectric and then for cases with
dielectrics separated by interfaces. Numerical results are presented
in Section 3. Finally, in Section 4, conclusions are presented.

2. Electric field solution due to a system of parallel
conductors

2.1. Conductors in homogeneous dielectric medium

Under the electrostatic regime, the electric field inside a charged
conductor is zero and consequently the conductor’s electric charge
is distributed along its boundary surface, with a density ω ([Cm−2]).
A system of parallel conductors is considered inserted in a homo-
geneous dielectric medium. The methodology developed for the
2D electric field problem approaches the conductor surface cross
section by a circumscribed polygon, Fig. 1. Each side of the poly-
gon line in the cross section corresponds in fact to a strip of charge
extruded along the conductor surface parallel to the conductor axis.
The conductor surface charge is, therefore, characterized by a mesh
of strips of charge, where at their edges the charge density is defined
by the charge on conductor’s surface located at the same position
as the strip edges. Strip edges (Fig. 1) correspond to the connec-
tion points between adjacent strips where the continuity of the
charge density is observed. Strip edges correspond, in this way, to
the discretization nodes in the 2D description of the problem.

The MoM  is applied where the integral operator has, in this case,
the form of a line or path integral which is inherent to the pres-
ence of 2D surface electric charge distributions. The point-matching
technique is adopted [12], meaning that Dirac’s functions are used
for the weighting functions and, on the other hand, linear approx-
imations are used for the sub-sectional basis functions instead of
step functions [12]. This means that strip charges are approximated
to a linear variation along the strip width.
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Fig. 2. Cross section of a strip of charge defined by the path s’ between the edge
nodes a and b. The point P is represented by the distance r(s’) to the point O of the
path s’. Location of point O is defined by the magnitude s’ which represents the
separation distance between point O and the origin of the path s’ – point a.

Consider a strip whose cross section is represented in Fig. 2,
where a linear charge distribution is assumed. The strip is described
by a path, in this case by the path s’. If the charge density is equal to
ωa and ωb at the edge points a and b, respectively, then the charge
density along the strip is given by:

ω(s′) = fa(s′)ωa + fb(s′)ωb

fa(s′) = −1
l

s′ + 1; fb(s′) = 1
l

s′s
(1)

where s’ represents the magnitude of path s’ given by the distance
between a point on the strip and the respective path’s origin, point
a, and l represents the width of the strip – the distance between
points b and a.

The potential at the free space point P due to this strip of charge
is given by:

V(P) =
∫

s′

ω(s′)
2�ε0

ln
(

1
r(s′)

)
ds′ + V ′ (2)

where, ε0 is the vacuum permittivity, V ′
0 is an integration constant

and, from Fig. 2, r(s ’) is the distance between the observation point P
and the integration point on the strip of charge, O. Location of point
O is defined by the magnitude s’ of the strip path s’. This integral
has an analytical solution [21] (see Appendix), and the result, for
each point P where the potential is evaluated, depends not only on
the charge density at the strip ends (ωa and ωb) but also on the
position of P relative to the strip of charge. Note that the solution
in (2) corresponds to the usage of the 2D Green’s function for the
free space.

The electric field at P due to this strip of charge is given by:

E(P) =
∫

s′

ω(s′)
2�ε0

1
r(s′)

e(s′) ds′ (3)

where e(s ’) is the unit vector along the direction defined by the
point P and the point O of the strip of charge (Fig. 2). This integral
can also be evaluated analytically [21] (see Appendix).

The potential due to N charge strips is obtained by superposition,
adding the contribution of each strip individually as a consequence
of the linearity of the problem.

In this way, the global solution for the electric potential may
be built using the following global decomposition for the surface
charge density approximation

ω(s) =
N∑

k=1

fk(s) ωk (4)

where s represents the magnitude of the global path s defining the
conductor surfaces approximated to polygonal lines

s = s1 ∪ s2 ∪ · · · ∪ sN (5)
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