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Abstract

Because weakly damped system oscillations can endanger the secure operation of power systems, this paper is a study on how damping can be
increased. As the power system is nonlinear, an energy function approach, patterned after the direct method of Lyapunov function, is used in the
analysis. The analysis develops an energy function W and shows that a real power term (proportional to local frequency) and/or a reactive power
term (proportional to the line voltage differentiated with respect to time) increase the rate of diminution of the energy function W. This implies
effective damping of power swings by such power signals and is verified by simulations of a multi-machine system model. The damping signals
are introduced by voltage-source-converter (VSC) stations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Large interconnected power systems often suffer from
weakly damped power swings. Such lack of damping occurs
particularly in areas connected by weak tie-lines, systems
with longitudinal structures and generators connected by long
lines to the rest of the system. To enhance the damping of
power system oscillations, HVDC and FACTS controllers have
been used [1–4]. This paper focuses on VSC stations (the
inverters/rectifiers of VSC–HVDC and of distributed genera-
tion/renewable energy sources) [5–9], because on top of the
steady-state real and reactive power deliveries, they allow real
power modulation [7], reactive power modulation [8] and a com-
bination of real and reactive power modulations [9] to be applied
for dynamic performance enhancement.

So far, many studies have been based on small signal anal-
ysis of a simple model, which has certain limitations. Firstly,
the linearized model is valid only in the vicinity of the chosen
operating point. Then, power systems are large and complex.
Therefore one needs a methodology that can deal with large
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nonlinear systems. To achieve this goal, this paper adopts the
energy function method, patterned after the direct method of
Lyapunov. Traditionally, Lyapunov theory deals with a dynami-
cal system without inputs. Recently, it is also applied in feedback
design by making the Lyapunov derivative negative when choos-
ing the control [10]. Such ideas have been made precise with the
introduction of the concept of a Control Lyapunov Functions for
systems with control input, which has been successfully applied
to FACTS controllers [11,12,16]. Developing on [11,12,16], this
paper shows that real power term proportional to frequency
and/or a reactive power term proportional to time rate of volt-
age differentiation, increase the rate of diminution of the energy
function. Implicitly, the damping is increased. The theoretical
conclusions are verified by simulations in a multi-area power
system using VSC stations to implement the damping strategies.

The outline of the paper is as follows: In Section 2, a general
power system is modeled for energy function stability analy-
sis. The analysis identifies the type of real and reactive power
modulations in the network buses which increase the rate of
diminution of the energy function and therefore increase power
system damping. Further, it describes how the aforesaid mod-
ulations are carried out by VSC stations. Simulations and the
analysis of results are presented in Section 3. Conclusions are
drawn in Section 4.
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2. System model and the control strategy

In the interest of arriving at the contributions of this paper
quickly, the detailed derivations have been moved to Appendix
A. Appendix A contains the standard techniques used by the
energy function method but are nevertheless necessary for this
paper to be self sufficient. This section is a sketch of how the
present status of the research is reached and against this, the the-
oretical contribution of this paper can be appreciated. Following
in the footsteps of [1], the equations are referenced with respect
to the center of inertia (COI).

2.1. Generators

In the power system in Fig. 1, there are n generation
sources, each represented by Vi ∠φi (i = 1. . .n). The symbols Vi

(i = 1. . .n) represent constant emfs behind transient reactances
x′
i and φi are the mechanical rotor angle.

The dynamic equation of motion of each generator (i = 1. . .n)
is [13]:

φ̇i = ωi (1)

Miω̇i = Pmi − Pei − Diωi − Mi

MT

PCOI (2)

where Mi represents moment of inertia, the turbine power is
Pmi, the generated power is Pei = BijViVjsin(φI–φj) the sub-
script j = i + n being the bus to which it is connected and the
power associated with the center of inertia (COI) is PCOI =∑n

i=1(Pmi − Pei).

2.2. Network equations

There are N = n + m buses, numbered i = n + 1, n + 2,. . .2n,
2n + 1,. . .2n + m, each bus having voltage Vi ∠φi. At each bus
i, the load Pi(ωi) + jQi(Vi) is, in general, functions of frequency
ωi and voltage Vi. Usually, Pi(ωi) are assumed to be constant.
Emanating from the ith bus are connections to the other buses
and the generators which take a total complex power PFi + jQFi.
It is assumed that the line resistances can be neglected.

PFi =
2n+m∑
j=1

BijViVj sin φij (3a)

Fig. 1. Model of power system.

Fig. 2. Simplified model of VSC station.

QFi = −
2n+m∑
j=1

BijViVj cos φij (3b)

where φij = φI–φj.
Complex power balance at the ith bus requires;

{Pi(ωi) + jQi(Vi)} + (PFi + jQFi)} = 0.0 (4)

2.3. Energy function method

Following [13], the energy function W is defined as:

W = W1 + W2 (5)

where W1 is a positive definite function based on the kinetic
energy of the generators:

W1 = 1

2

n∑
i=1

Miω
2
i (6)

and W2, which addresses the complex powers at the n + m buses,
consists of 6 components, and as Appendix A elaborates.

2.3.1. Status of energy function research
The end-point of existing research is the proof of negative

definiteness in dW/dt. It is pertinent to draw attention to the fact
that in the chain rule differentiation, when W2 is differentiated
with respect to φi, it has a dφi/dt term and likewise when differ-
entiated with respect to Vi, it has dVi/dt. Although provision has
been made that for the load Pi(ωi) + jQi(Vi) at each bus i, to be
functions of frequency ωi and voltage Vi, in all previous work
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