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Abstract

This paper considers the problem of optimally placing fixed and switched type capacitors in a radial distribution network. The aim of this
problem is to minimize the costs associated with capacitor banks, peak power, and energy losses whilst satisfying a pre-specified set of physical
and technical constraints. The proposed solution is obtained using a two-phase approach. In phase-I, the problem is formulated as a conic program
in which all nodes are candidates for placement of capacitor banks whose sizes are considered as continuous variables. A global solution of the
phase-I problem is obtained using an interior-point based conic programming solver. Phase-II seeks a practical optimal solution by considering
capacitor sizes as discrete variables. The problem in this phase is formulated as a mixed integer linear program based on minimizing the L1-norm
of deviations from the phase-I state variable values. The solution to the phase-II problem is obtained using a mixed integer linear programming
solver. The proposed method is validated via extensive comparisons with previously published results.
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1. Introduction

Reactive power flows in a radial distribution network always
cause an increase in losses. At heavy loads, the losses due to
reactive flows can become very significant. Moreover, these
flows result in a line voltage drop that is greater than it would
be at unity power factor. Consequently, capacitor banks are
commonly installed on distribution lines to compensate for the
customer reactive power requirement [1].

The problem of optimal capacitor placement on a radial net-
work has been the subject of research for many decades thus
resulting in a myriad of techniques [2], the most promising of
which are based on optimization algorithms. Grainger at al. pio-
neered the application of non-linear programming methods to
the problem of optimal capacitor placement [3]. In Ref. [3],
both the capacitor locations and sizes were treated as continu-
ous variables. Mixed integer non-linear programming methods
were employed by Baran and Wu to select capacitor loca-
tions from a set of candidates [4]. Most recently, Aguiar and
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Cuervo [5] presented a mixed integer linear programming for-
mulation that also accounts for the discrete capacitor sizes.
The validity of this approach, however, strongly depends on
the accuracy of the loss function approximation which has to
be obtained via a properly chosen set of supporting hyper-
planes [6]. The optimal capacitor placement problem in which
capacitor sizes and locations can only take discrete values is
believed to be non-deterministic polynomial (NP) complete
[71, i.e., it is almost certain that solving for its global opti-
mum cannot be done efficiently on a computer. According
to many experts, a proof that a problem is NP complete is
an adequate reason not to devote time and effort to trying to
find a global solution [8]. Instead, it is recommended that one
searches for a good near optimal solution of the problem. In
fact, the published solution methods for the practical capaci-
tor placement problem all adhere to this recommendation. The
complexity of the problem has prompted many researchers to
consider non-deterministic search techniques. Examples of such
techniques which have been reported in the power systems
literature include simulated annealing [9], genetic algorithms
[10], tabu search [11], immune-based optimization [12], hybrid
tabu search including heuristic features [7], hybrid micro-
genetic algorithm in conjunction with fuzzy logic [13], ant
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direction hybrid differential evolution [14], a memtic evolu-
tionary approach [15], and a variable scaling hybrid differential
evolution method [16]. Although the above non-deterministic
approaches have been validated on sample test systems, their
success depends on tuning several algorithmic parameters. In
general, these parameters are often system dependent and con-
sequently their optimal setting requires skill on part of the user.
A search algorithm which yields an optimal solution to the
practical capacitor placement problem is therefore still sought
after.

This paper proposes a deterministic two-phase approach
to the optimal capacitor placement problem. Phase-I is based
on conic programming. In fact, a recent paper by the author
demonstrated that the radial load-flow problem could be effi-
ciently solved using conic programming [17]. Phase-I extends
the radial load-flow formulation by including candidate reac-
tive sources at all nodes. The conic optimizer allocates reactive
power to the sources with the aim of reducing the total system
cost. In phase-I, the power allocated to each reactive source is
treated as a continuous variable. Consequently, a computation-
ally cheap global solution can be obtained using a path-following
interior-point method. Phase-II takes into account the dis-
crete nature of the sizes of the reactive power sources, i.e.,
the practical capacitor bank kVAr sizes. In essence, phase-II
seeks a least absolute value solution having minimum devia-
tion from the phase-I values of the state variables. The discrete
nature of the capacitor sizes requires the least absolute value
problem to be formulated as a mixed integer linear program,
the solution for which can be obtained using branch-and-
bound techniques. The main advantage of the phase-I/phase-II
approach is that it can make use of existing high-powered soft-
ware tools such as MOSEK [18] for solving conic and mixed
integer linear programming problems. MOSEK [18] includes
implementations of an interior-point method for conic program-
ming and a branch-and-bound technique for mixed integer linear
programming.

The rest of this paper is organized as follows. Section 2
reviews the formulation of the radial load-flow problem as a
second-order cone program. Sections 3 and 4 discuss the phase-I
and phase-II approaches, respectively. To simplify the presenta-
tion, one load level is initially considered. Section 5 extends the
solution algorithm to account for load variations and capacitors
of both switched and fixed types. Simulation results are reported
in Section 6 and compared with solutions previously published
in Refs. [5,7,10,11,13,15]. The paper is concluded in Section 7.

2. Radial load-flow

Consider a radial distribution network with one substation
connected at node 0 and load nodes numbered from 1,...,N. Itis
assumed that the magnitude of the voltage at node 0 is specified.
Denote by «(i) the set of nodes connected to node i and by
P1i/Q1; the real/reactive power loads (in pu) at node i. Let the
line model consist of the single-line equivalent circuit shown in
Fig. 1 (all relevant quantities are in pu) and define 6;;=0; — 0},
u; = Vl.z/ﬁ, Rij = ViVj Cos 9,’1' and Iij = Vl‘Vj sin 91]

It has been shown in Ref. [17] that the radial load flow solu-
tion can be obtained by solving the following second-order cone
program:

maximize Z R;j subject to (1)

ijlines
1. Fori=1,....N:

- Z Py = —2u Z Gij + Z (GijRij — Bjjlij)

jea() jea() J€a()
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2. For all ij lines:
Zuiuj > Rl-zj“rlizj, ©)
R;j > 0. (6)

The original variables (i.e. V; and 6;) can be easily deduced
once the new adopted variables (i.e. u;, R;j, and I;;) are computed.
Note that the simple feeder model in Fig. 1 has been widely
accepted for optimal capacitor placement. For instance, it has
been used in Refs. [4,5,7,9-15].

3. Phase-I: conic programming

To simplify the presentation, one load level in a given period
of time (e.g. 8760 h) is initially considered. The objective of the
optimal capacitor placement problem is to minimize the costs
associated with the installed capacitors, peak power, and energy
losses. Because the radial distribution system has only one sub-
station that injects power into node O, the real power injected
into node 0 is equal to the sum of the total real system losses and
the total real load demand (which is constant). Consequently,
minimizing the energy losses is equivalent to minimizing the
energy injected at node 0. The objective can be therefore written
as:

N
minimize Ko » _ Qci + (Kp + TKe) > Poj, @)
i=1 jea(0)

where Q.; is the reactive power injected by a capacitor at node
i (in pu), Pg; is the real power flow from node 0 to node j (in
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Fig. 1. Distribution line model.
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