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Abstract

In this paper, a multi-objective optimization model is presented to estimate the practical stability region and maximum endurable disturbance
rejection for a small-signal power system dynamic model with saturation nonlinearities and disturbance rejection. Iterative algorithms are developed
to solve for Pareto optimized solutions (POS) of this optimization. Furthermore, as an application of this approach to power systems, a method to
analyze the impact of saturation nonlinearities and disturbance rejection on power system small-signal stability is introduced based on the estimated
stability region and maximum endurable disturbance rejection. Numerical results of a test power system with detailed saturated PSS controllers
are described, indicating the reliability and simplicity of the method.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

To improve the small-signal stability of power systems, much
has relied on power system stabilizers (PSS) [1]. Thus, the issues
of PSS parameter optimization [2,3] and control law design [4,5]
are of interest. However, more often than not, the saturation
nonlinearities, either intentionally designed or resulting from
the limitations of equipments, are ubiquitous in the engineer-
ing fields [6], such as the power systems [7,8]. In general, PSS
controllers are also subject to the saturation nonlinearities and
disturbance rejection, which unavoidably affect the performance
of PSS [9] and even can lead to loss of stability [6].

Therefore, if the saturation exists, the performance of the PSS
control systems designed without considering saturation nonlin-
earities and disturbance rejection may seriously deteriorate [9].
Furthermore, the disturbance rejection may lead to the inexis-
tence of stability region [10,11]. Utility engineers did look at
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the issue, mainly relying on extensive simulation studies [7,8].
Little attention has been paid to investigate the impact of such
factors on system stability from analytical perspective.

The aim of this paper is to provide analytical methods to
analyze the impact of saturation nonlinearities on power system
small-signal stability when disturbance rejection exists, based on
our recent work [9], where saturation nonlinearities are consid-
ered but the disturbance rejection is ignored. PSS performance
study is taken as an example. The key is to characterize the
stability region and maximum endurable disturbance rejection.

However, it is very difficult to handle the above-mentioned
task today [6,10], since saturation nonlinearities make a sim-
ple linear system become a complex nonlinear system [10–12].
Therefore, many researches focus on the study of estimating
stability region in recent years, e.g. [6,12] and the references
therein, in which Hu derives a promising method to obtain an
ellipsoid inside stability region by a quadratic Lyapunov func-
tion based on a convex LMI optimization [6]. This idea has been
used in our recent work [9], and good results are obtained. Nev-
ertheless, the disturbance rejection issue is not considered. In
order to conquer this limitation, in some references, say [6,13],
an invariant ellipse is derived as the practical stability region
estimation, but an efficient algorithm is still lacking. In fact, in
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these papers, an auxiliary parameter is searched by a grid search
mechanism, and the maximum endurable disturbance rejection
is obtained by enumeration, so it unavoidably requires extensive
computation burden.

To overcome this problem, we propose a multi-objective opti-
mization model [14] to estimate the practical stability region and
the maximum endurable disturbance rejection on the basis of
[6,13]. Iterative algorithms are provided to solve for Pareto opti-
mized solutions (POS) of this optimization, and some properties
of these algorithms are proved also. Moreover, the procedures
of the iterative algorithms are very simple and can be handled
efficiently by the toolbox in Matlab.

The structure of the paper is as follows. In Section 2,
the model of power systems with saturation nonlinearities
and disturbance rejection is presented. Section 3 provides a
multi-objective optimization model for estimating the practical
stability region and maximum endurable disturbance rejection.
The algorithms for solving for POS of the multi-object opti-
mization problem are developed in Section 4. Based on the
POS, a method to analyze the performance of PSS in power
systems is provided in Section 5. In Section 6, a numerical exam-
ple is described, indicating the reliability and simplicity of this
approach. Section 7 draws the main conclusions of this work.

2. Power system model with saturation nonlinearities
and disturbance rejection

Within a neighborhood around a given operating point, the
ideal linear state space model of a power system can be expressed
as [1,11]:

ẋ(t) = A′x(t) + Bu(t) + Ew(t); x0 ∈ X0, w(t) ∈ W (1)

where x ∈ Rn is the state; u ∈ Rm is the control; A′ ∈ Rn×n is the
system matrix; x0 denotes the initial states; X0 is the set of all
initial states under consideration, w(t) denotes the disturbance
rejection; W ⊂ Rl is the set of all disturbance rejection under
consideration and matrix E is the corresponding disturbance
rejection matrix, respectively.

Due to actuator saturation which is considered to be a anti-
windup function in this paper, a more realistic model is [6]:

ẋ = A′x + Bsat(u) + Ew (2)

where sat(·) is a saturation function which is symmetric with
respect to the origin, i.e.:

sat(u) = [sat1(u1), sat2(u2), . . . , satm(um)]T,

sati(ui) =
{

ūi|ui| > ūi

ui|ui| ≤ ūi

(3)

Thus, under a linear feedback control of form u = Gx, the
closed loop system becomes

ẋ = A′x + Bsat(Gx) + Ew (4)

where pair {A′,B} is assumed to be controllable [11], G ∈ Rm×n

is the feedback gain matrix such that Re(λi) < 0 for all eigen-

values λi of matrix A′ + BG, and Re(λi) denotes the real part of
λi.

In our recent work [9], we did not consider the impact of
disturbance rejection w(t) on the dynamic behaviors of the sat-
urated system. In system (4), should disturbance rejection w be
persistent, the origin is no longer an equilibrium point nor is
it Lyapunov stable [10]. In this case, robust stability concepts
such as uniform ultimate boundedness [10,15], also referred to
as practical stability [11,16], can be applied to system (4). In
particular, system (4) is said to be uniformly ultimately bounded
(UUB) with respect to X0 and W if, for all x0 ∈ X0 and for every
w ∈ W , solution x(t) to Eq. (9) converges to a specified neigh-
borhood around the origin. As such, the following region of
practical stability is introduced for the subsequent investigation
of system (4):

Ω = {x0 ∈ X0|ϕt(x0, w) is UUB for every choice of w ∈ W}
(5)

where ϕt(x0, w) denotes the trajectory of system (4) starting
from the initial state x0. For simplicity, we make no differ-
ence between the terms “practical stability region” and “stability
region” later.

From the definition of the stability region, the saturation non-
linearities result in that only the states in Ω can be considered to
be stable. Furthermore, in order to analyze the impact of distur-
bance rejection on the dynamic behaviors of (4), we introduce
a parameter, say α, for measuring the magnitude of disturbance
rejection, i.e., we suppose that the disturbance rejection set W
can be expressed as

W = {w ∈ Rl|wTw ≤ α} (6)

Clearly, the relationship between W and α is

α = max
w ∈ W

{wTw} (7)

To analyze the dynamic performance of system (4) later,
we further consider set X0 of expected initial states is a high-
dimension ellipse defined as

X0 = {x ∈ Rn|xTP0x ≤ β2} (8)

where β > 0 is a variable to be decided later and P0 ∈ Rn×n is a
given and nonnegative definite symmetric matrix which is con-
sidered to be an identify matrix in the simulation. Namely, we
assume that the expected initial states can be contained by an
ellipse with fixed shape and variable size.

So from the previous analysis, the closed loop and asymptot-
ically stable linear model:

ẋ = (A′ + BG)x + Ew:=Ax + Ew (9)

is valid only for the states inside the polyhedron F, defined in
the state space as

F = {x ∈ Rn| − ū ≤ Gx ≤ ū} (10)

where the inequalities are based on “elements by elements”, i.e.,
F = {x| − ūi ≤ gix ≤ ūi, i = 1, 2, ..., m} and gi is the ith line
of feedback gain matrix G.
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