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a  b  s  t  r  a  c  t

This  article  presents  an alternative  approach  to solve  hydrothermal  systems  operation  planning  based
on stochastic  dynamic  programming.  Under  the presented  approach,  the hydroelectric  power  plants
are  grouped  into  equivalent  subsystems  of energy  and  the  expected  cost  functions  are  modeled  by a
piecewise  linear  approximation,  by means  of  the Convex  Hull  algorithm.  Also,  under  this  methodology,
the  problem  is  solved  independently  for each  subsystem  such  that  the  state  variables  to be  considered
are  the  energy  storage  and  energy  net interchange  of  the subsystem.  The  presented  results  have  shown
that  this  subsystems  separation  technique  reduces  significantly  the  computation  time  when  compared
with  the  traditional  techniques  of stochastic  dynamic  programming,  demonstrating  the  effectiveness  of
the proposed  methodology.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The main objective of the hydrothermal system operation plan-
ning is to determine hydro and thermal generation amounts that
minimize the expected operating cost of the system over the con-
sidered period. The operational cost comprises fuel costs of the
thermal units, energy purchases from neighboring systems and the
cost of deficit, which is a penalty for unmet demand [1–3].

The minimization of operation cost on hydrothermal systems
basically involves the management of water resources over time
by using the capacity of the reservoirs in an optimal manner.

However, the amount of water inflows available in the hydro
units at future scenarios is not precisely known. So, the main
challenge of long-term hydrothermal operation planning is to
determine the opportunity cost of using the water storage.

Among the optimization techniques used in the hydrothermal
system operation planning, the technique based on dynamic pro-
gramming (DP) [3–5] is the most commonly. DP is a sequential
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process of decision-making that follows the “principle of optimality
of Bellman” [6], allowing the recursive solution of the problem. The
decision to maintain a reservoir at a given level may  have been
right depending on the operation strategy and the sequence of
inflows to reach the reservoir in subsequent periods. Therefore, the
determination of the energy operation planning is characterized
by sequential decision-making in which the optimality of a current
decision depends on a number of future events. Due to these char-
acteristics identified in the planning, the DP has wide application in
solving this kind of problem, because it is appropriate to treat mul-
tistage problems and problems with stochastic behaviors through
stochastic dynamic programming (SDP).

The techniques based on DP have been proposed over the past
years for the solution of the planning problems. In the technical
literature can be found several works related to the implementation
of DP in the optimal reservoir management.

Yeh [7] presented several techniques that apply reservoir man-
agement and operations models, including DP techniques.

In the same way, Labadie [8] presented a review of the state-
of-the-art in optimization of reservoir management. In this article,
it is evident the importance of using DP in the resolution of reser-
voir management problem. For example, state increment dynamic
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programing (SIDP) [9], which is a method that utilizes an initial fea-
sible solution and from this an iterative process is used to obtain
an improved result using conventional PD. Sampling stochastic
dynamic programming (SSDP), a technique that captures the com-
plex temporal and spatial structure of the streamflow process by
using a large number of sample streamflow sequences [10–12].

Other techniques to tackle the DP problem include the DP suc-
cessive approximation (DPSA) method [13], where each reservoir is
optimized at a time, assuming a fixed operation for the remaining
reservoirs. The two-stage algorithm minimizes total costs from
the first-stage decisions plus the total expected future cost, being
the cost of all future decisions, which depends on the first-stage
solution [14,15]. Incremental dynamic programing and differential
dynamic programming [8] were also used in the reservoir opti-
mization problem. These methods are generally useful techniques
for the deterministic case; however, they were not successful in the
stochastic multireservoir case, as presented by [8].

The use of a SDP was proposed by [16]; this technique allows
to incorporate the stochastic behavior of inflows in the planning
problem.

The SDP has the disadvantage of requiring the discretization of
the state space, which leads to an exponential increase in compu-
tational effort, resulting in a phenomenon known as the “curse of
dimensionality” [17–19].

Several alternative methodologies have been proposed to solve
the problem of combinatorial explosion imposed by SDP, so that
it has reasonable computational effort. The most adopted simplifi-
cation consists in the aggregation of the hydroelectric system in
an equivalent energy system, where the hydraulic variables are
transformed in energy variables [17,18]. However, according to
the number of discretizations, the evaluation of a high number of
states may  be required, and hence the problem still can become
computationally complex.

Another strategy to solve the problem of dimensionality is to
use the stochastic dual dynamic programming (SDDP) [3,4,19]. The
SDDP uses the technique of Bender’s decomposition [20] and treats
the problem analytically, and thus it is not necessary to discretize
the state space of the system, and this solves the problem of dimen-
sionality. However, the SDDP technique requires a convergence
process by running many forward and backward sequences.

Nowadays, the SDDP methodology is used in many countries,
as in the case of the Brazilian power system, where the SDDP
with aggregated reservoirs is still the official methodology used
for determining the long-term hydrothermal system operation.

The use of SDP and SDDP can be observed in Nordic power
system. For example, Johannesen and Flatabo [21] presented an
overview of the strategy of analysis and methods of solution
applied at the Norwegian Research Institute of Electricity Supply
for the optimal scheduling of a hydro-dominated power production
system. Fosso et al. [22] presented a case study of the deregu-
lated electricity supply system in Norway, and above methods are
used. Gjelsvik et al. [23] discuss how SDDP has been applied to
hydropower scheduling in the Nordic countries. This work empha-
sizes the importance of using this method in determining the price
of energy in systems with high percentage of hydro generation.

In addition to the aforementioned, several studies have focused
on the importance of incorporating network constrains in long- and
medium-term hydrothermal operation planning [19,24,25].

Recently, there have been many advances in integrating the
DP with other algorithms, mostly including heuristic techniques,
such as neurodynamic programming [26,27]; genetic dynamic pro-
gramming [28] and swarm optimization dynamic programming
[29], with just a few applied to the hydrothermal system opera-
tion planning. For example, the genetic algorithm was applied to
the Brazilian hydrothermal system by Leite [30], producing signifi-
cant results. Additionally, neural networks were used to model the

cost-to-go functions with an efficient state space discretization
scheme by Cervellera et al. [31], but using nonlinear optimiza-
tion. The drawbacks of heuristic and nonlinear methodologies are
that they require specialized system knowledge otherwise the opti-
mization solution does not converge to an optimal solution [8].

Finally, there is the alternative of using Convex Hull algorithms
[32,33] to obtain the expected cost-to-go functions (ECF) [34,35]. In
this case, it uses a smaller number of discretizations by representing
these functions with an efficient approach.

Besides these techniques to solve the DP problems, several
parallel processing techniques have been used to reduce the
computational time in hydrothermal system operation planning
[35,36].

The aim of this work is to enable the use of SDP to solve the
problems of large hydrothermal system planning, using an alterna-
tive strategy in order to reduce the dimensionality of the problem
and thus, to reduce the computational time. In this approach, the
hydroelectric power plants are grouped into equivalent subsys-
tems of energy and the ECF’s are modeled by a piecewise linear
approximation, by means of the Convex Hull algorithm.

In this methodology, the subsystems are considered apart to
each other, and thus, the variables that make up the state space to
determine the ECF’s are the initial stored energy and the energy
net interchange of subsystem. With this, there are a smaller num-
ber of linear programming problems (LPP) to be solved and yet
these problems become less complex as a result of the state vari-
ables to be discretized. In other words, we are going to solve one
problem for each equivalent energy system instead of solving the
problem considering all system together. This strategy allows the
use of less state variables in each problem (initial storage energy
and energy interchange). A preliminary study on the methodology
can be observed in Ref. [37].

In this article, the applicability of the proposed methodology is
demonstrated through the use of an example system with tutorial
purposes. Then, the methodology is used in a reduced equiva-
lent system, based on the interconnected Brazilian power system.
The results showed the effectiveness of the proposed methodology
when compared with the traditional techniques of SDP and SDDP.

The outline of this article is structured as follows. Section 2
presents a list with the notations and symbols that are used in this
article. Section 3 presents a dynamic programming model applied
to the long-term operation planning problem and explains how
the Convex Hull algorithm is used in the cost-to-go functions for-
mation. Section 4 introduces the proposed methodology. Section 5
illustrates a case study. Finally conclusions are drawn in section 6.

2. Notations and symbols

�t+1(xt+1) Expected operation cost of period t+1 associated with state
Xt+1.

CDEFi,t Penalty associated to the energy deficit in i-th subsystem
and stage t.

COEFAci,t Coefficient of c-th cut, concerning the variable final energy
stored in i-th subsystem and stage t to composition of ECF.

COEFBci,t Coefficient of c-th cut, concerning the variable energy
interchanges net in i-th subsystem and stage t to
composition of ECF.

COEFCci,t Coefficient of c-th cut, for the independent term in i-th
subsystem and stage t to composition of ECF.

CSPi,t Penalty for spillage in i-th subsystem and stage t.
Ct(Ut) Generation cost in the stage t, associated with operative

decision Ut

CTi,t Operation cost of the thermal plant in i-th subsystem and
stage t.

defi,t Energy deficit in i-th subsystem and stage t.
Di,t Total demand in i-th subsystem and stage t.
eii,t Energy inflows in i-th subsystem and stage t.
esi,t Energy stored in i-th subsystem in the beginning of stage t.
esi,t+1 Energy stored in i-th subsystem at the end of stage t.
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