Accepted Manuscript

Degradation of isopropyl alcohol using UV and persulfate in a large reactor

Chia-Chang Lin, Chi-Wei Tsai

PII: S1383-5866(18)30100-X

DOI: https://doi.org/10.1016/j.seppur.2018.06.068

Reference: SEPPUR 14722

To appear in: Separation and Purification Technology

Received Date: 9 January 2018 Revised Date: 25 May 2018 Accepted Date: 25 June 2018

Please cite this article as: C-C. Lin, C-W. Tsai, Degradation of isopropyl alcohol using UV and persulfate in a large reactor, *Separation and Purification Technology* (2018), doi: https://doi.org/10.1016/j.seppur.2018.06.068

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Degradation of isopropyl alcohol using UV and persulfate in a large reactor

Chia-Chang Lin^{a,b,*}, Chi-Wei Tsai^a

^aDepartment of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan,

R.O.C.

^bDepartment of Psychiatry, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan, R.O.C.

*corresponding author at: Department of Chemical and Materials Engineering, Chang Gung University,

Taoyuan, Taiwan, ROC. E-mail address: higee@mail.cgu.edu.tw (C.-C. Lin).

Abstract

This investigation concerns the degradation of isopropyl alcohol (IPA) in aqueous solutions using

UV and persulfate (PS) in a large reactor, as well as the effects of PS concentration, initial IPA

concentration, pH, and added anions on this process. A higher PS concentration was associated with

more efficient degradation of IPA. However, an excessive PS concentration limited the degradation of

IPA. Moreover, the efficiency of degradation of IPA increased with decreasing initial IPA

concentration. SO₄• was identified by performing quenching studies using specific alcohols. The

results thus obtained reveal that SO₄• was the predominant radical in the UV/PS process at pH 7. The

degradation of IPA by the UV/PS process in a large reactor exhibited pseudo-first-order kinetics. The

efficiency of degradation of IPA followed the order pH 7 > pH 4 > pH 10. Anions (Cl⁻, CO₃²⁻, and

 HCO_3) inhibited the degradation of IPA and their inhibitive effects followed the order $Cl^2 > CO_3^{2-} >$

HCO₃. At pH 7, a PS concentration of 2.10 g/L, and an initial IPA concentration of 100 mg/L, 100% of

IPA was degraded in the absence of anions with an observed degradation rate constant of 0.1890 min⁻¹,

as measured after 20 min. Comparison with the heat/PS process demonstrates that the degradation of

IPA was improved by the UV/PS process at a low temperature. Accordingly, the proposed method that

is based on the UV/PS process is an effective method for degrading IPA in aqueous solutions.

Keywords: degradation; isopropyl alcohol; UV; persulfate

Download English Version:

https://daneshyari.com/en/article/7043453

Download Persian Version:

https://daneshyari.com/article/7043453

<u>Daneshyari.com</u>