Accepted Manuscript

Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO₂ anchored by polydopamine towards effective oil-water emulsions separation

Jiuyun Cui, Zhiping Zhou, Atian Xie, Minjia Meng, Yanhua Cui, Siwei Liu, Jian Lu, Shi Zhou, Yongsheng Yan, Hongjun Dong

PII: S1383-5866(17)32751-X

DOI: https://doi.org/10.1016/j.seppur.2018.03.054

Reference: SEPPUR 14474

To appear in: Separation and Purification Technology

Received Date: 22 August 2017 Revised Date: 22 December 2017 Accepted Date: 24 March 2018

Please cite this article as: J. Cui, Z. Zhou, A. Xie, M. Meng, Y. Cui, S. Liu, J. Lu, S. Zhou, Y. Yan, H. Dong, Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO₂ anchored by polydopamine towards effective oil-water emulsions separation, *Separation and Purification Technology* (2018), doi: https://doi.org/10.1016/j.seppur.2018.03.054

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Bio-inspired fabrication of superhydrophilic nanocomposite

membrane based on surface modification of SiO₂ anchored by

polydopamine towards effective oil-water emulsions separation

Jiuyun Cui^a, Zhiping Zhou^a, Atian Xie^b, Minjia Meng^b, Yanhua Cui^b, Siwei Liu^a, Jian Lu^c, Shi

Zhou^b, Yongsheng Yan^{b*}, Hongjun Dong^{b*}

^aSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China

^bInstitute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical

Engineering, Jiangsu University, Zhenjiang, 212013, China

^cSchool of Chemistry, Jilin Normal University, Changchun, 130032, China

Corresponding Author*

E-mail: lcx@mail.ujs.edu.cn

Telephone Number: +86 0511-88790683; fax: +86 0511-88791800

Abstract: A new PVDF@pDA@SiO2 nanocomposite membrane was fabricated by virtue of the

surface modification of polydopamine anchored SiO2 on PVDF membrane through a facile and

eco-friendly preparation process. It possessed the superior superhydrophilicity/underwater

superoleophobicity properties and presented the outstanding antifouling oil performance and

high-efficiency separation ability for oil-water emulsions, which mainly resulted from its special

surface micro-nano structure and pore induced capillarity phenomenon. Furthermore, the

PVDF@pDA@SiO₂ nanocomposite membrane also exhibited the splendid separation

performance, regeneration ability and universality for various oil-water emulsions separation. In

addition, the oil-water emulsion separation mechanism was discussed in depth. This work might

provide a significant guidance for large-scale production and application of this nanocomposite

membrane in the fields of wastewater recovery and drinking water treatment.

Key words: Bio-inspired; Nanocomposite membrane; Superhydrophilicity; Underwater

superoleophobicity; Oil-water emulsions separation

Download English Version:

https://daneshyari.com/en/article/7043491

Download Persian Version:

https://daneshyari.com/article/7043491

<u>Daneshyari.com</u>