Accepted Manuscript

Analysis and optimization of cyclone separators with eccentric vortex finders using large eddy simulation and artificial neural network

Lakhbir Singh Brar, Khairy Elsayed

PII:	S1383-5866(18)30293-4
DOI:	https://doi.org/10.1016/j.seppur.2018.06.013
Reference:	SEPPUR 14667
To appear in:	Separation and Purification Technology
Received Date:	24 January 2018
Revised Date:	14 April 2018
Accepted Date:	5 June 2018

Please cite this article as: L. Singh Brar, K. Elsayed, Analysis and optimization of cyclone separators with eccentric vortex finders using large eddy simulation and artificial neural network, *Separation and Purification Technology* (2018), doi: https://doi.org/10.1016/j.seppur.2018.06.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Analysis and optimization of cyclone separators with eccentric vortex finders using large eddy simulation and artificial neural network

Lakhbir Singh Brar^{a*}, Khairy Elsayed^b

^aMechanical Engineering Department, Birla Institute of Technology, Mesra, Ranchi 835215, India ^bMechanical Power Engineering Department, Faculty of Engineering at El-Mattaria, Helwan University, Masaken El-Helmia P.O., Cairo 11718, Egypt

*E-mail address: brarlsb@gmail.com, brarls@bitmesra.ac.in (L.S. Brar).

Abstract

The present study is aimed at exploring the effects of eccentric vortex finder tubes with respect to the cyclone axis, as well as to optimize the performance parameters. For this, experiments are designed using Latin hypercube sampling (LHS) plan for different combinations of the two independent variables viz. e_x/D and e_y/D on a plane that contains the cyclone roof (with *D*, the main body diameter; e_x and e_y , the eccentricity in *x*- and *y*-direction, respectively). The range of both e_x/D and e_y/D is taken between -0.06 to 0.06. Secondly, large eddy simulation (LES) is used to predict the Euler number and Stokes number for different combinations of independent variables, and this data is used to train an artificial neural network. The variations observed in the performance parameters with change in location of vortex finder are significant. Lastly, the optimal data sets are generated using genetic algorithms – these Pareto front points facilitate the designers to choose the eccentric locations according to the desired cyclone performance.

Keywords: Cyclone separators; Eccentric vortex finders; Large eddy simulation (LES); Latin hypercube sampling (LHS) plan; Artificial neural network (ANN); Surrogate-based optimization (SBO)

Download English Version:

https://daneshyari.com/en/article/7043540

Download Persian Version:

https://daneshyari.com/article/7043540

Daneshyari.com