Accepted Manuscript

Performance of nZVI/H₂O₂ process in degrading polyvinyl alcohol in aqueous solutions

Chia-Chang Lin, Shih-Ting Hsu

PII: \$1383-5866(16)32913-6

DOI: https://doi.org/10.1016/j.seppur.2018.03.041

Reference: SEPPUR 14461

To appear in: Separation and Purification Technology

Received Date: 30 December 2016 Revised Date: 18 March 2018 Accepted Date: 18 March 2018

Please cite this article as: C-C. Lin, S-T. Hsu, Performance of nZVI/H₂O₂ process in degrading polyvinyl alcohol in aqueous solutions, *Separation and Purification Technology* (2018), doi: https://doi.org/10.1016/j.seppur. 2018.03.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Performance of nZVI/H₂O₂ process in degrading polyvinyl alcohol in aqueous solutions

Chia-Chang Lin^{a,b,*} and Shih-Ting Hsu^a

^aDepartment of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan,

R.O.C.

^bDepartment of Psychiatry, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan,

R.O.C.

*corresponding author at: Department of Chemical and Materials Engineering, Chang Gung

University, Taoyuan, Taiwan, ROC. 3 2118800#5760. E-mail address: Tel.: +886

higee@mail.cgu.edu.tw (C. C. Lin).

Abstract

A rotating packed bed with blade packings was used to obtain nanoscale zero-valent iron

(nZVI). Polyvinyl alcohol (PVA) was degraded by the nZVI/H₂O₂ process, and the effects of the

addition of oxygen, pH, nZVI dosage, and H₂O₂ concentration on this process were determined.

The efficiency of degradation of PVA in the presence of air exceeded that in the presence of

nitrogen. The efficiency of degradation of PVA under acidic conditions was higher than that

under alkaline conditions. The degradation of PVA by the nZVI/H₂O₂ process was optimized at

a particular nZVI dosage and H₂O₂ concentration. At pH 3 with an nZVI dosage of 0.005 g/L

and an H₂O₂ concentration of 1×10⁻⁴ mol/L in the presence of air, the nZVI/H₂O₂ process using

the produced nZVI degraded 94% of the PVA in 1 min; this efficiency of degradation was much

higher than that obtained using nZVI that was supplied by Alfa-Aesar.

Keywords: Nanoscale zero-valent iron; Polyvinyl alcohol; H₂O₂; Degradation

Download English Version:

https://daneshyari.com/en/article/7043691

Download Persian Version:

https://daneshyari.com/article/7043691

<u>Daneshyari.com</u>