Accepted Manuscript

Extraction of Scandium (III) from acidic solutions using organo-phosphoric acid reagents: A comparative study

S. Das, S.S. Behera, B.M. Murmu, R.K. Mohapatra, D. Mandal, R. Samantray, P.K. Parhi, G. Senanayake

PII: S1383-5866(17)33941-2

DOI: https://doi.org/10.1016/j.seppur.2018.03.023

Reference: SEPPUR 14443

To appear in: Separation and Purification Technology

Received Date: 30 November 2017 Revised Date: 6 March 2018 Accepted Date: 12 March 2018

Please cite this article as: S. Das, S.S. Behera, B.M. Murmu, R.K. Mohapatra, D. Mandal, R. Samantray, P.K. Parhi, G. Senanayake, Extraction of Scandium (III) from acidic solutions using organo-phosphoric acid reagents: A comparative study, *Separation and Purification Technology* (2018), doi: https://doi.org/10.1016/j.seppur. 2018.03.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Extraction of Scandium (III) from acidic solutions using organo-phosphoric acid reagents: A comparative study

S. Das^a, S.S. Behera^a, B.M. Murmu^b, R.K.Mohapatra^b, D. Mandal^b, R. Samantray^{a,b}, P.K. Parhi^{a, b*}, G. Senanayake^c

Abstract

Comparative and synergistic solvent extraction of Sc(III) using two phosphoric acidic reagents such as di-(2-ethyhexyl) phosphoric acid and 2,4,4,tri-methyl,pentyl-phosphinic acid was investigated. Slope analysis method suggests a cation exchange reaction of Sc(III) with both extractants at a molar ratio of extractant: Sc(III) = 2.5:1 at equilibrium pH< 1.5. The plot of log D vs. log [Extractant] yield the slope (n) value as low as 1.2-1.3 and as high as n=7 at low and high extrcatant concentration level, respectively. Extraction isotherm study predicted the need of 2 stages at A: O=1:4 and A: O=1:3 using 0.1 M D₂EHPA and 0.1 M Cyanex 272, respectively. Stripping of Sc (III) was carried out at varied NaOH concentration to ascertain the optimum stripping condition for effective enrichment of metal. The predicted stripping condition (2-stages with A: O=1:3 and 1:4 for D₂EHPA and Cyanex 272, respectively) obtained from Mc-Cabe Thiele plot was further validated by 6-cycles CCS study. An actual leach solution of Mg-Sc alloy bearing 1.0 g/L of Sc (III), 2.5 g/L of Mg and 0.2 M HCl was subjected for selective separation of Sc at the optimum condition. The counter current simulation (CCS) study for both extraction and stripping of actual solution resulted quantitative separation of Sc with ~12 fold enrichment. The organic phase before and after loading of Sc (III) along with the diluents was characterized by FTIR to ascertain the phase transportation of Sc (III).

^a School of Chemical Technology & School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar- 751024, India

^bSchool of Biotechnology, KIIT Deemed to be University, Bhubaneswar-751024, India

^c Chemical & Metallurgical Engineering & Chemistry, School of Engineering and Information Technology, Murdoch University, Perth, WA 6150, Australia

Download English Version:

https://daneshyari.com/en/article/7043738

Download Persian Version:

https://daneshyari.com/article/7043738

<u>Daneshyari.com</u>