Accepted Manuscript

The behavior of Ca and its compounds in Si during the slag refining with CaO-SiO₂-CaF₂ system under air atmosphere

Haoran Cheng, Songsheng Zheng, Chao Chen


PII: S1383-5866(17)34028-5

DOI: https://doi.org/10.1016/j.seppur.2018.02.052

Reference: SEPPUR 14416

To appear in: Separation and Purification Technology

Received Date: 8 December 2017 Revised Date: 23 February 2018 Accepted Date: 25 February 2018

Please cite this article as: H. Cheng, S. Zheng, C. Chen, The behavior of Ca and its compounds in Si during the slag refining with CaO-SiO₂-CaF₂ system under air atmosphere, *Separation and Purification Technology* (2018), doi: https://doi.org/10.1016/j.seppur.2018.02.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The behavior of Ca and its compounds in Si during the slag refining with CaO-SiO₂-CaF₂ system under air atmosphere

Haoran Cheng¹, Songsheng Zheng^{1*}, Chao Chen^{1, 2*}

¹College of Energy, Xiamen University, Xiamen 361102, P. R. China ² College of Physical Science and Technology, Xiamen University, Xiamen 361005, P. R. China

Abstract

A simulative industrial processing, slag refining under open air atmosphere conditions, has been established to observe the removal efficiency of impurities from molten Si at 1823 K. The behavior of Ca and its compounds in Si are investigated. The results show that, $CaSi_2$ is a key compound on removing Fe, Al, Ca and P from Si. Ca in molten Si is produced from the reaction between CaO and Si at the melting stage of slag and Si, as well as at the beginning refining period of around 10 min, which is largely depends on the net content of single CaO phase. With the temperature going down to 1303 K gradually, most of Si is solidified and Ca percentage is increased, then species $CaSi_2$ phase is generated from the melt composed of 61.4 wt% Si, while Fe is precipitated at the boundary between phases $CaSi_2$ and Si. Furthermore, it is determined that, part of P in Si is oxidized to PO_4^{3-1} not by PO_4^{3-1} than to PO_4^{3-1} than to PO_4^{3-1} than to PO_4^{3-1} therefore, a slag rich in CaO will be much easier to produce Ca in Si and more efficient to remove impurities by acid leaching.

Keywords: Impurities; Calcium; Silicon; Slag treatment; Gibbs free energy; Segregation

1. Introduction

Global photovoltaic production in 2016 was amounted to 82.6 GWp, where 94% was made of crystalline silicon. ^[1] In the foreseeable future, silicon will continue to dominate the photovoltaic market. Phosphorus (P), acting as a donor dopant, is sensitive for the performance of silicon solar cell, ^[2] The P content in solar grade silicon (SoG-Si) is generally accepted below 0.1 ppmw (1×10⁻⁷). ^[3,4] It is hard to remove P from Si by directional solidification due to its relative large segregation coefficient of 0.35 ^[5]. Vacuum treatments with electron beam (EB) melting ^[6-8] or induction refining ^[9,10] are normally carried out effectively on P removal based on its high vapor pressure. However, the rigorous experiment conditions, such as high vacuum condition at high temperature, make it

Download English Version:

https://daneshyari.com/en/article/7043762

Download Persian Version:

https://daneshyari.com/article/7043762

<u>Daneshyari.com</u>