

Contents lists available at ScienceDirect

Separation and Purification Technology

journal homepage: www.elsevier.com/locate/seppur

CTAB assisted hydrothermal preparation of $Bi_2WO_6-WO_3$ nanosheets on TiO_2 nanotube arrays for photoelectrocatalytic applications

Zhiyuan Liu, Qingyao Wang*, Wenqian Rong, Rencheng Jin, Yuming Cui, Shanmin Gao*

School of Chemistry and Materials Science, Ludong University, Yantai 264025, China

A R T I C L E I N F O

Keywords: TiO₂ nanotube arrays Bi₂WO₆ Hydrothermal method Photoelectrochemical performance

ABSTRACT

 $Bi_2WO_6-WO_3$ nanosheets were deposited on the surface of TiO_2 nanotube arrays (TiO_2 NTs/Bi₂WO₆) via the one-pot hydrothermal method by adjusting the addition of cetyltrimethyl ammonium bromide (CTAB), and the morphology, composition and visible light response were investigated. The as-prepared TiO_2 NTs/Bi₂WO₆ showed significantly enhanced visible light absorption, visible light photocurrent and photoelectrocatalytic removal of MO, RhB, MB and Cr(VI). The results indicated that when the addition of CTAB was 0.1 g, the $Bi_2WO_6-WO_3$ nanosheets with a thickness of 10 nm on TiO_2 NTs showed the visible light photocurrent density of 104.89 mA/cm², photoelectrocatalytic removal efficiencies of 75.65%, 66.07%, 95.21% and 74.18% for the removal of MO, RhB, MB and Cr(VI), respectively. The excellent photoelectrochemical performances of TiO_2 NTs/Bi₂WO₆ were ascribed to the high visible light absorption and rapid transportation of photogenerated electrons on $Bi_2WO_6-WO_3$ nanosheets, and the corresponding mechanism was tentatively proposed.

1. Introduction

In recent years, TiO₂ nanotube arrays have been recently drawing great attention as a star material for solar energy application because of their superior photocatalytic and photoelectronic performance [1-3]. The high specific surface area and unique highly ordered array structure prepared on a Ti substrate provide the excellent carrier for quantum dot adsorption and effective photogenerated electron transportation. Because of the inherent narrow band gap, many efforts especial serious semiconductor sensitizations have been attempted to harvest visible light which contributes about 45% of the whole solar spectrum. Various semiconductors including sulfide semiconductors oxide semiconductors [5] and even complex [4]. semiconductor compounds [6] were deposited on the surface of TiO2 NTs to improve the visible light harvesting. However, the microstructures of these semiconductors were not paid special attention, and the influences of semiconductor structures on the photoelectrochemical performance especial the electron separation and transportation of hybrid materials should be investigated in detail. It is well known that graphene is the marvellous transportation materials due to its ultrathin sheet structures, and TiO₂ NTs/graphene hybrid photoelectrodes are prepared to reduce the recombination chance of electron-hole pairs, which achieve the perfect results [7]. However, graphene only could be used to accelerate the transportation of photogenerated electrons, but the solar absorption efficiency is too low as TiO₂ NTs sensitizers.

Therefore, it is exciting to explore the high visible light active sensitizers with 2 D nanosheet structures, which would synchronously overcome the restrictions on the poor visible light response and high recombination rate of TiO_2 NTs.

Compared with BiVO₄ and other bismuth based semiconductor [8–10], the Bi₂WO₆ photocatalyst with a bandgap of $\sim 2.8 \text{ eV}$ has attracted intensive interest due to its excellent intrinsic physical and chemical properties for decomposition of organic dyes in recent years [11]. Investigation researches indicate the morphology of Bi_2WO_6 significantly influences the photocatalytic degradation of dye molecules, and the regulation synthesis of Bi₂WO₆ with uniform microstructures could be achieved by addition of morphological controlling agents [12]. Zheng and his co-workers [13] prepared flower-like Bi₂WO₆ by the hydrothermal method using CTAB as the morphological controlling agent. Zhang [14] prepared a series of Bi2WO6 photocatalysts by a surfactant-assisted hydrothermal method, and the influences of surfactant on the photocatalytic activity of Bi2WO6 nanoparticles were studied in detail. Kong et al. [15] reported the ultrathin Bi₂WO₆ nanosheets with high harvesting ability of ultraviolet or/and visible light, whereas the near-infrared, and the nanosheet structures greatly improved the photoelectrochemical properties. Therefore, Bi₂WO₆ nanoparticles, especial Bi₂WO₆ nanosheets, would be the excellent sensitizer to enhance the solar absorption and photoelectrochemical properties. To the best of our knowledge, little work has been reported so far concentrating on the deposition of Bi₂WO₆ nanosheets on the surface of

* Corresponding author. E-mail addresses: wangqingyao0532@163.com (Q. Wang), gaosm@ustc.edu (S. Gao).

https://doi.org/10.1016/j.seppur.2018.02.034

1383-5866/ © 2018 Elsevier B.V. All rights reserved.

Received 15 December 2017; Received in revised form 8 February 2018; Accepted 14 February 2018 Available online 15 February 2018

 TiO_2 NTs to improve the visible light photocurrent and photocatalytic removal of pollutants. In this paper, the cationic surfactant CTAB was used to adjust the morphology of Bi₂WO₆ nanoparticles on the surface of TiO₂ NTs by the one-pot hydrothermal method, and Bi₂WO₆-WO₃ nanosheets with thicknesses of 10 nm were prepared by addition of 0.1 g CTAB. The prepared TiO₂ NTs/Bi₂WO₆-WO₃ showed the high visible light response, photocurrent and photoelectrocatalytic properties.

2. Experimental

2.1. Materials

Cetyltrimethyl ammonium bromide (CTAB), Ti substrate, bismuth nitrate ($Bi(NO_3)_3$; $5H_2O$) and sodium tungstate (Na_2WO_4 ; $2H_2O$) are purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China), of analytical grade, and used without further purification.

2.2. Preparation of Bi₂WO₆-WO₃ nanosheets sensitized TiO₂ NTs

TiO₂ nanotube arrays were prepared on a Ti substrate by a simple anodization method, which was similar with our previous report [16]. Bi₂WO₆ nanosheets were deposited on the surface of TiO₂ NTs by a hydrothermal method using CTAB as a morphological controlling agent. Firstly, 1 mmol of Bi(NO3)3 5H2O was dissolved into 30 mL of 1 M HNO3 solution under sustained magnetic stirring, and then 1 mmol of Na₂WO₄·2H₂O was added into the Bi(NO₃)₃ solution to prepare Bi₂WO₆ precipitations. To obtain the uniform morphology of Bi₂WO₆ nanoparticles, CTAB with different addition amounts of 0 g, 0.05 g, 0.10 g and 0.15 g, were dissolved into the mixed solution. Secondly, the solution was transferred into a 50 mL autoclave with an inner Teflon lining, maintained at 160 °C for 14 h, and then cooled to room temperature. Lastly, the film was taken out from the autoclave, and ultrasonically washed thoroughly with ethanol and deionized water, and dried at 60 °C in air. To investigate the influence of CTAB on the morphology and photoelectrochemical performances of TiO₂ NTs, the samples prepared with different CTAB additions of 0 g, 0.05 g, 0.10 g and 0.15 g were marked as TiO₂ NTs/Bi₂WO₆ (0), TiO₂ NTs/Bi₂WO₆ (0.05), TiO₂ NTs/Bi₂WO₆ (0.10) and TiO₂ NTs/Bi₂WO₆ (0.15), respectively.

2.3. Characterization

The products were characterized by using XRD (D8 ADVANCE, Germany), SEM (Quanta 200 FEG, Japan), and DRS (UV-2550, Japan). The transient photocurrent responses and electrochemical impedance spectroscopy (EIS) Nyquist plots of the samples were acquired using a (CHI610E, China) electrochemical workstation with a standard three electrode system. The working electrode was the prepared samples with an active area of 1.8 cm^2 , and Ag/AgCl and Pt served as the reference and counter electrodes, respectively. The sample electrodes were illuminated with a solar simulator equipped with a 500 W Xe lamp (CEL-S500) with a visible-light filter (> 400 nm).

2.4. Measure of the photoelectrocatalytic activity

The photoelectrocatalytic (PEC) activities of the samples for the degradation of methylene orange (MO), methylene blue (MB), rhodamine B (RhB) solution were measured under solar irradiation simulated using a 500 W Xe lamp (CEL-S500). A 0.1 M Na₂SO₄ solution was used as supporting electrolyte, and the potential was fixed at 1 V versus Ag/ AgC. Before photodegradation, adsorption equilibrium for the dye on catalyst surface was established by magnetic stirring in the dark for 30 min. After visible-light irradiation for 20 or 30 min, the remaining dye concentration was determined with a UV–vis spectrophotometer by detecting the maximum absorption wavelength for MO, MB and RhB at

Fig. 1. XRD patterns of the as-prepared samples: (a) $TiO_2 NTs/Bi_2WO_6$ (0), (b) $TiO_2 NTs/Bi_2WO_6$ (0.05), (c) $TiO_2 NTs/Bi_2WO_6$ (0.10) and (d) $TiO_2 NTs/Bi_2WO_6$ (0.15).

464, 664 and 552 nm, respectively.

The PEC reduction of Cr(VI) was performed similar with the PEC degradation of dyes. A 0.1 M NaCl solution was used as supporting electrolyte, and the potential was fixed at 0.5 V versus Ag/AgC. The Cr (VI) content in the solution was determined colorimetrically at 540 nm using the diphenylcarbazide method.

3. Results and discussion

The phase compositions of TiO₂ NTs and TiO₂ NTs/Bi₂WO₆–WO₃ were investigated by X-ray diffraction patterns. As shown in Fig. 1a, except for the diffraction peaks of Ti substrates, $(1 \ 0 \ 1)$, $(0 \ 0 \ 4)$, $(2 \ 0 \ 0)$, $(1 \ 0 \ 5)$ and $(2 \ 1 \ 1)$ crystal faces located at diffraction peaks 25.3°, 37.8°, 48.1°, 53.9° and 55.1° could be observed, which are identical with the standardization anatase TiO₂ (JCPDS12-1272). After the hydrothermal deposition, new diffraction peaks at 28.3° corresponding to the $(1 \ 3 \ 1)$ diffraction face of Bi₂WO₆ (JCPDS 39-0256) is observed. Surprisingly, several distinct peaks at 13.9°, 22.7°, 24.3°, 36.6°, 49.9° and 58.3° could be indexed as $(1 \ 0 \ 0)$, $(0 \ 0 \ 1)$, $(1 \ 1 \ 0)$, $(2 \ 0 \ 1)$, $(2 \ 0)$ and $(4 \ 0 \ 0)$ diffraction faces of WO₃ (JCPDS 33-1387), respectively. The WO₃ particles are the byproduct during the formation of Bi₂WO₆, and they could form heterojunction with high electron transportation interfaces, which has been reported by Li and his colleagues [17].

The influence of CTAB addition on the morphology of Bi₂WO₆-WO₃ deposited on the surface of TiO2 NTs was investigated from SEM images of TiO₂ NTs/Bi₂WO₆-WO₃. As shown in Fig. 2a and b, few Bi₂WO₆-WO₃ nanoparticles are covered on the surface of TiO₂ NTs when no CTAB was added in the hydrothermal progress. When 0.05 g CTAB was added into the solution, the cationic surfactant molecules could rapidly adsorbed on Bi₂WO₆-WO₃ crystal faces with high energy, and the adsorption effect induces the orientated growth of Bi₂WO₆-WO₃ nanoparticles. Therefore, CTAB is an effective morphological controlling agent, which has the key roles in the formation of Bi₂WO₆-WO₃ nanosheets. Further improving the addition of CTAB to 0.1 g, the ultrathin Bi_2WO_6 -WO₃ nanosheets with thicknesses of 10 nm are vertically arranged on the surface of TiO₂ NTs, and these uniform Bi₂WO₆-WO₃ flakes intersect with each other to form petalstructures. When the amount of CTAB was improved to 0.15 g, too much CTAB inversely destroyed the uniform morphology of Bi₂WO₆-WO₃ nanosheets, and the thickness of Bi₂WO₆-WO₃ nanosheets becomes too large, which cause the absolute coverage of TiO₂ nanotubes.

The visible light response properties of TiO_2 NTs and TiO_2 NTs/ Bi₂WO₆ were evaluated by UV–vis diffuse reflectance spectra (DRS). As shown in Fig. 3a, pure TiO_2 NTs could only absorb the UV light with wavelength shorter than 385 nm, which is ascribed to the inherent band Download English Version:

https://daneshyari.com/en/article/7043814

Download Persian Version:

https://daneshyari.com/article/7043814

Daneshyari.com