Accepted Manuscript

A nanosheet-like α -Bi₂O₃/g-C₃N₄ heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants

Dongdong Chen, Shuxing Wu, Jianzhang Fang, Shaoyou Lu, Guang Ying Zhou, Weihua Feng, Fan Yang, Yi Chen, ZhanQiang Fang


PII: S1383-5866(17)30603-2

DOI: https://doi.org/10.1016/j.seppur.2017.11.011

Reference: SEPPUR 14165

To appear in: Separation and Purification Technology

Received Date: 22 February 2017 Revised Date: 18 August 2017 Accepted Date: 6 November 2017

Please cite this article as: D. Chen, S. Wu, J. Fang, S. Lu, G. Zhou, W. Feng, F. Yang, Y. Chen, Z. Fang, A nanosheet-like α -Bi₂O₃/g-C₃N₄ heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants, *Separation and Purification Technology* (2017), doi: https://doi.org/10.1016/j.seppur.2017.11.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

nanosheet-like α-Bi₂O₃/g-C₃N₄ heterostructure modified by plasmonic metallic Bi and

oxygen vacancies with high photodegradation activity of organic pollutants

Dongdong Chen^a, Shuxing Wu^a, Jianzhang Fang^{a,b*}, Shaoyou Lu^c, Guang Ying Zhou^{a,b}, Weihua Feng^a

Fan Yang^a, Yi Chen^a, ZhanQiang Fang^{a,b}

^aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006,

Guangdong, China

^bGuangdong Technology Research Center for Ecological Management and Remediation of Urban

Water System, Guangzhou 510006, China

^cShenzhen Center for Disease Control and Prevention, Shenzhen 518055, China

Abstract

Bi/α-Bi₂O₃ nanoparticles rich in oxygen vacancies in the surface and subsurface loading on g-C₃N₄

nanosheets were realized via a calcination-photoreduction technique, during which the emergence of

oxygen vacancies and the generation of metallic Bi from α-Bi₂O₃ decomposition were achieved

simultaneously. The co-occurrence of Bi nanoparticles and oxygen vacancies was favorable for the

*Corresponding author: Tel: +8620 39310250

E-mail address: fangjzh@scnu.edu.cn (J. Z. Fang)

1

Download English Version:

https://daneshyari.com/en/article/7044130

Download Persian Version:

https://daneshyari.com/article/7044130

<u>Daneshyari.com</u>