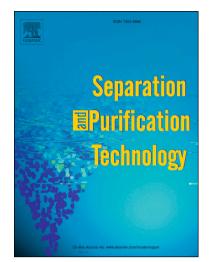
Accepted Manuscript

Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O_2/N_2 and CO_2/N_2 separation

Maíra Andrade Rodrigues, Jéssica de Souza Ribeiro, Elisângela de Souza Costa, Jussara Lopes de Miranda, Helen Conceiç ão Ferraz

PII: S1383-5866(17)31989-5


DOI: https://doi.org/10.1016/j.seppur.2017.10.024

Reference: SEPPUR 14106

To appear in: Separation and Purification Technology

Received Date: 3 July 2017

Revised Date: 13 October 2017 Accepted Date: 13 October 2017

Please cite this article as: M. Andrade Rodrigues, J. de Souza Ribeiro, E. de Souza Costa, J. Lopes de Miranda, H. Conceição Ferraz, Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O₂/N₂ and CO₂/N₂ separation, *Separation and Purification Technology* (2017), doi: https://doi.org/10.1016/j.seppur.2017.10.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O_2/N_2 and CO_2/N_2 separation

Maíra Andrade Rodrigues^{a,c*}, Jéssica de Souza Ribeiro^b, Elisângela de Souza Costa^b, Jussara Lopes de Miranda^b, Helen Conceição Ferraz^a

^aPrograma de Engenharia Química-COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Brazil

^bInstituto de Química, Universidade Federal do Rio de Janeiro, P.O. Box 68563, 21941-909 Rio de Janeiro, Brazil

^cPetrobras/CENPES, Rio de Janeiro, Brazil

*Corresponding author: <u>mrodrigues@peq.coppe.com.br</u>

Abstract

Metal-Organic Frameworks (MOF) containing zirconium and chromium metals have been reported as gas materials for gas storage and separation, especially for CO₂. The high selectivity of MOF can be exploited through their dispersion in a polymer matrix, producing mixed matrix membranes for different applications in gas separation and adsorption. This study reports the use of nanostructured mixed matrix membranes (MMM), produced by dispersion of the MOFs UiO-66 (Zr) and MIL-101 (Cr) in polyurethane for O₂/N₂ and CO₂/N₂ gas separation. UiO-66 (Zr), MIL-101 (Cr) and composites comprising these particles were characterized by SEM, XRD, TGA and FTIR analyses, which indicated that the MOFS were successfully synthesized. Defect-free dense PU/UiO-66 (Zr) membranes were obtained, with increased selectivity due to the higher oxygen permeability. For the MIL-101 (Cr) membrane, no significant increases in oxygen selectivity and permeability were observed. On the other hand, best performance for CO₂/N₂ separation was observed for the MIL-101 (Cr) membrane. A significantly greater CO₂ permeability (around 220%) in comparison with polyurethane membrane was obtained. N₂ permeability was also improved, resulting in the same

Download English Version:

https://daneshyari.com/en/article/7044178

Download Persian Version:

https://daneshyari.com/article/7044178

<u>Daneshyari.com</u>