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a  b  s  t  r  a  c  t

Rational  function  approximations  are  widely  used  for  the  modelling  of  frequency-dependent  effects  in
power  system  components.  This  paper  proposes  to  use  optimization  by  the  damped  Gauss–Newton
method  to  improve  the accuracy  of rational  approximations  calculated  by  three  mainstream  fitting
techniques:  Bode’s  asymptotic  approximation,  Sanathanan–Koerner  iteration,  and  vector  fitting.  The
optimization  method  is  described  in  detail  along  with  an  outline  of  the  numerical  implementation.  The
proposed  methodology  is demonstrated  for a synthetic  example  for the modelling  of  a  measured  reactor
frequency  response  and for  the rational  fitting  of the  frequency-dependent  parameters  corresponding
to  a single-phase  transmission  line.  In this  example,  we  also  present  the  impact  of the  optimization
enhancement  on the  final  time  domain  responses.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The modelling of power system components exhibiting
frequency-dependent effects is usually performed in the frequency
domain via curve fitting procedures, leading to rational function-
based models. These models can be expressed in alternative
form, including polynomial form, pole-zero form and pole-residue
form. Such models are widely used in the modelling of over-
head lines and underground cables, in power transformers at
high frequencies and in frequency-dependent network equiv-
alents. Rational fitting techniques have been developed since
the 1950s for model synthesis based on frequency response
data.

Levy [1] suggested in 1959 a process of linearized least squares
(LS) based on a polynomial form representation of the rational
function. In 1963, Sanathanan and Koerner [2] (SK) improved
the Levy method by introducing iterations whereby the biasing
in the approximation caused by the linearization was reduced
by LS weighting. Rogers and Steiglitz [25] presented in 1967 an
implementation of damped Gauss–Newton (DGN) method for the
parameter identification of a transfer function when the output
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contains independent Gaussian noise. This methodology is based
on polynomial form by using the z-transform. In the implementa-
tion it is necessary to calculate filter parameters along with those
of the model. Also, the input data for the transfer function should
be known. Marti [3] presented in 1982 a method based on Bode’s
asymptotic approximation (Bode) for transmission line modelling,
which quickly became popular for the modelling of overhead lines.
Gustavsen and Semlyen [4] developed in 1999 a methodology
known as vector fitting (VF), which, together with its different for-
mulations [5–8], has become one of the most popular techniques.
VF is related to SK but achieves superior performance by using pole-
residue form instead of the polynomial form and implicit weighting
by pole relocation instead of direct weighting. Furthermore, the
poles are easily enforced to be stable. The biasing of VF was further
improved [5,6] by introducing a relaxation in the formulation (RVF).

In addition to these three mainstream approaches, a number
of other approaches have been proposed. Soysal and Semlyen
[9] proposed in 1992 an improvement to the result by Levy via
optimization by Gauss–Newton. Fernandes and Neves [10] demon-
strated in 1997 the calculation of rational approximations using
the Levenberg–Marquardt method. Noda [11] in 2005 presented
an iterative algorithm that partitions the entire frequency range to
avoid ill-conditioning of the system, which is based on the Levy
method. More recently, Pordanjani et al. [12] in 2011 proposed a
method based on a genetic algorithm.
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The aim to this paper is to enhance the accuracy of the ratio-
nal approximation expressed in pole-zero form (Bode), polynomial
form (SK) and pole-residue form (VF/RVF) by using the DGN
method. SK, Bode and VF have been selected because they represent
the mainstream fitting techniques.

In this work, DGN method is implemented in the Laplace domain
for use with models on polynomial form, pole-zero form and pole-
residue form.

In this paper, we first briefly review the appropriate physical
constraints that a rational model must satisfy: stability, realness,
symmetry and passivity. Then, we describe three rational fitting
methods: Bode, SK and VF/RVF. We  proceed with a description of
DGN, which will be used to improve the accuracy by the models
obtained with the aforementioned techniques. The procedure is
demonstrated for the modelling of (1) a synthetic example, (2) a
measured reactor frequency response, and (3) a transmission line.
With the exception of VF/RVF, which is available in [13], all methods
have been implemented in MATLAB.

2. Model constraints

A rational function-based model is required to comply with a
number of constraints associated with the behaviour of physical
systems:

(1) Stability: The model must have all its poles in the left half-plane.
(2) Realness: All model parameters must be real or come in complex

conjugate pairs.
(3) Reciprocity:  In the case of multi-port systems, the state-space

model may  be required to be symmetrical with respect to its
terminals, e.g., in the case of an admittance representation.

(4) Passivity: The model cannot generate power whatever the ter-
minal condition.

In this work, we pay attention only to constraints (1) and (2)
because the reciprocity constraint does not apply to the scalar
examples in this work and because the passivity constraint is nor-
mally assessed and enforced by perturbation in a post-processing
step [14–17].

3. Fitting methods

In this section, we describe the main steps in the methods known
as Bode, SK and VF/RVF while paying attention to the enforcement
of the necessary constraints in Section 2.

3.1. Asymptotic approximation (Bode)

The asymptotic approximation known as Bode [18] was
introduced in 1945 and afterwards applied by Marti [3] for trans-
mission line modelling. Using Bode fitting leads to a pole-zero form
given by

F(s) = k
(s − z1) (s − z2) · · · (s − zn)
(s − p1) (s − p2) · · · (s − pm)

(1)

where poles and zeros are successively added to the total response
function by tracing the resulting asymptote of the approximation
to the magnitude function of the given response. To simplify the
development of the technique, it is assumed [3] that the full set of
poles and zeros are first order, real and distinct and lie in the left
half-plane. It may  also include a pole at the origin.

This method results in a model with magnitude function
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where K0 = kz1z2. . .zn/p1p2. . .pm and s = jω. This equation can be
expressed as
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In the implementation, one starts at the lowest frequency sam-
ple and compares the function to be fitted with the sum of the line
segments given by the approximation of each term in (3), adding
a pole or a zero when the asymptote departs from the target func-
tion by a tolerance value [3]. For transmission line modelling, one
normally uses a relative tolerance criterion.

The realness criterion in Section 2 is enforced by restricting all
poles and zeros to be real. The stability criterion is enforced by
restricting the poles to lie in the left half-plane. It is also normal
[3] to enforce the zeros to lie in the left half-plane by giving a
minimum-phase shift function. In the implementation by Marti,
the accuracy is enhanced by shifting the poles and zeros around
their first asymptotes [19]. This feature is not used in the present
work.

3.2. Sanathanan–Koerner (SK) iteration

The SK-method is based on the polynomial form:

F(s) ∼= N(s)
D(s)

= a0 + a1s + a2s2 + · · · + ansn

1 + b1s + b2s2 + · · · + bmsm
. (4)

The objective is to find all coefficients for the polynomials N(s)
and D(s) in (4) that minimize the error function

ε(s) = F(s) − N(s)
D(s)

. (5)

As the problem (5) is non-linear in the denominator unknowns,
Levy [1] multiplied (5) by D(s) to obtain a linear problem, thereby
minimizing a weighted error function

ε′(s) = ε(s)D(s) = F(s)D(s) − N(s). (6)

The unknown coefficients in (4) can now be solved by formulat-
ing (6) as an LS problem, Ax = b. The solution to the Levy problem is
biased because of the multiplication of F(s) with D(s) in (6), which
leads the weighting of the LS problem to be solved. To overcome this
deficiency, Sanathanan and Koerner [2] proposed an iterative pro-
cedure where (6) is divided by the denominator from the previous
iteration

ε′′(s) = ε(s)D(s)l

D(s)l−1
= F(s)D(s)l

D(s)l−1
− N(s)l

D(s)l−1
(7)

The subscript l denotes the iteration number, and D(s) is consid-
ered 1 in the first iteration (l  − 1 = 0). Thus, (7) can be expressed
as

ε′′(s) = 1
D(s)l−1

(F(s)D(s)l − N(s)l) . (8)

Eq. (8) is formulated as a weighted LS problem (WLS), WAx  = Wb,
where W is the diagonal weighting matrix.

The realness criterion in Section 2 is enforced by restricting all
coefficients for N(s) and D(s) to be real quantities, and stability is
achieved by flipping any pole of D(s) in the right half-plane into the
left half-plane by changing the sign of the real part and getting new
coefficients for the polynomial.
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