Accepted Manuscript

Theoretical and Experimental Investigations of Isosteric Heats for Water Adsorption on Silica Gel Surfaces

Wu Fan, Anutosh Chakraborty, Kai Choong Leong

PII: S1359-4311(18)31648-X

DOI: https://doi.org/10.1016/j.applthermaleng.2018.05.096

Reference: ATE 12235

To appear in: Applied Thermal Engineering

Received Date: 14 March 2018 Revised Date: 23 May 2018 Accepted Date: 24 May 2018

Please cite this article as: W. Fan, A. Chakraborty, K. Choong Leong, Theoretical and Experimental Investigations of Isosteric Heats for Water Adsorption on Silica Gel Surfaces, *Applied Thermal Engineering* (2018), doi: https://doi.org/10.1016/j.applthermaleng.2018.05.096

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Theoretical and Experimental Investigations of Isosteric Heats for Water Adsorption on

Silica Gel Surfaces

Wu Fan, Anutosh Chakraborty*, Kai Choong Leong

School of Mechanical and Aerospace Engineering, Nanyang Technological University

50 Nanyang Avenue, Singapore 639798, Republic of Singapore

*Corresponding author: E-mail: AChakraborty@ntu.edu.sg, Tel: +65-6790-4222

Abstract

The knowledge of the isosteric heats (ϱ_{st}^{o}) is essential to design porous adsorbents for

calculating the performances of adsorption-assisted cooling, separation and gas storage

systems. This paper presents a thermodynamic framework to calculate the interaction

potentials and isosteric heats for water adsorption on SiO2 structures. Here both Lennard

Jones (LJ) and electrostatic potentials are considered. It is found that (i) Q_{st}^o varies from 1.37

eV (~131 kJ/mol) to 0.54 eV (~52 kJ/mol) for the adsorption of one water molecule on

various pore sizes of SiO₂ structure, and (ii) Q_{st}^o depends on the pore size (H). Q_{st}^o is found to

be very high in the super-micro-pore regions. The density functional theory (DFT) is applied

to calculate Q_{st}^o for the adsorption of water on silica. Here water-water interactions are not

considered. Later Q_{st}^o for five types of silica gels are obtained from experimentally-measured

isotherms data at low pressures (up to 0.15 kPa) and wide range of temperatures. The

simulation result agrees well with the experimental data.

Keywords: Isosteric heat of adsorption, Pore width, adsorption interaction, LJ Potentials

1

Download English Version:

https://daneshyari.com/en/article/7044891

Download Persian Version:

https://daneshyari.com/article/7044891

<u>Daneshyari.com</u>