FISEVIER

Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

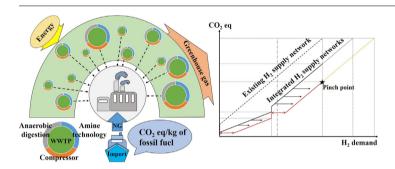
Research Paper

Integrated hydrogen supply networks for waste biogas upgrading and hybrid carbon-hydrogen pinch analysis under hydrogen demand uncertainty

Soonho Hwangbo^a, KiJeon Nam^a, Jeehoon Han^b, In-Beum Lee^c, ChangKyoo Yoo^{a,*}

- a Department of Environmental Science and Engineering, Center for Environmental Studies, Kyung Hee University, Yongin-Si 446-701, Republic of Korea
- ^b School of Chemical Engineering, Chonbuk National University, Jeon-ju 561-756, Republic of Korea
- ^c Department of Chemical Engineering, POSTECH, Pohang 790-784, Republic of Korea

HIGHLIGHTS


- Integrated hydrogen supply networks (IHSNs) are developed.
- The environmental impact and demand uncertainty are considered.
- Multi-stage two-stage stochastic model is designed to solve the IHSNs model.
- Hybrid carbon-hydrogen pinch analysis is suggested to investigate the IHSNs model.
- A case study of Gyeongsang-do in Korea is applied for the IHSNs model.

ARTICLE INFO

Keywords:

Biological hydrogen supply network Multi-objective two-stage stochastic model Hybrid carbon-hydrogen pinch analysis Optimization

GRAPHICAL ABSTRACT

ABSTRACT

This study aims to develop integrated hydrogen supply networks (IHSNs) by combining a natural gas hydrogen supply network and a sludge-biogas-biomethane-hydrogen supply network which is an environmentally benign hydrogen production system. Sludge from wastewater treatment plants is converted into biogas by anaerobic digestion, biomethane is generated using amine technology, which is one of the biogas upgrading technologies, and finally, hydrogen is produced by steam reforming. Multi-objective two-stage stochastic mixed integer linear programming is used to simultaneously optimize the total annual cost and the total environmental cost under hydrogen demand uncertainty. An ε -constraint method is employed to solve the multi-objective function, and Pareto analysis is performed to compare the results from the economic cost and the environmental cost. Then, hybrid carbon-hydrogen pinch analysis is suggested to investigate two distinct hydrogen supply networks in IHSNs, and is verified by the results and a sensitivity analysis based on supplementary wind power. Gyeongsangdo where is one of the five provinces in the Republic of Korea is applied for a case study to validate the proposed model and the results illustrate the feasibility of IHSNs.

1. Introduction

Global warming due to the use of fossil fuels has been consistently driving research on efficient energy management and the development of renewable energy. Hydrogen (H₂), which is one of the most critical components in the energy field, not only has great advantages as a

future energy carrier, but has also been utilized in a variety of industries (metallurgy, ammonia, petrochemistry, and methanol) [1,2]. Even though H_2 is an abundant chemical substance, it generally exists in molecular forms, such as water or organic compounds, and H_2 production processes are inherently necessary to manufacture pure H_2 [3].

H₂ production processes are mainly divided into steam reforming

E-mail address: ckyoo@khu.ac.kr (C. Yoo).

^{*} Corresponding author.

Nomenclature			biomethane/kg of H ₂)
		HDP_{sc}	hydrogen demand in petrochemical industry (kg/day)
Set		HER^{MEA}	heat energy reference net consumption (kWh/kWh bio-
			methane output)
w	wastewater	HNG	hydrogen production cost from NG (US\$/kg)
S	sludge	HNGC	hydrogen to NG conversion factor (kg of NG/kg of hy-
<i>b</i> 1	biogas		drogen)
b2	biomethane	MD	methane density (kg/m³)
h	hydrogen	MEC	methane to electricity conversion (kWh/kg of methane)
p	pipeline transportation mode	MRBG	methane ratio in biogas (m ³ of methane/m ³ of biogas)
c	compressor	NBGE	needed biogas for energy consumption in reference (m ³ /
g	geographical region		day)
sc	scenario	NGHV	NG heating value (MJ/kg)
		NGprice	NG price (US\$/MMBtu)
Paramete	rs	O_0^{AD}	AD operating cost (€/ton)
		OD	operating days (day/yr)
ADCap	AD capacity (10 ³ tons/yr)	OMC	operating and maintenance charge
<i>BGBMC</i>	biogas to biomethane conversion factor (kg of bio-	SD	sludge density (kg/m³)
	methane/kg of biogas)	SR	sludge reference flow rate (m ³ /day)
BGD	biogas density (kg/m³)	SRBGC	sludge to reused biogas conversion factor (kg of biogas/kg
BGR	biogas reference flow rate (m³/day)		of sludge)
BGR^{AD}	biogas reference flow rate from AD (m³/day)	STBGC	sludge to generated total biogas conversion factor (kg of
BMD	biomethane density (kg/m³)		biogas/kg of sludge)
BMF	biomethane flow rate (kg/day)	WWD	wastewater density (kg/m ³)
BMHV	biomethane heating value (MJ/kg)		wastewater flow rate (kg/day)
BMR	biomethane reference flow rate (m³/day)	WWSC	wastewater to sludge conversion factor (kg of sludge/kg of
BM price	biomethane price AD-MEA (US\$/MMBtu)	,, ,,,,,,	wastewater)
Cpipeline	unit pipeline capital cost (US\$/km)	WWR	wastewater reference flow rate (m ³ /day)
CAD	initial AD conital cost (106 f)	ζ	probability
C_0 $C_0^{compressor}$	initial compressor cost (US\$)	5	probability
C_0^{MEA}	initial MEA capital cost (US\$/yr)	Variables	
CC	currency conversion (US\$/€)	v ar tables	
CCRR	carbon capture rate reference (kg/day)	$ACC_{s,g}$	AD capital cost (US\$/yr)
CDRBM	carbon dioxide ratio in biomethane	$ACC_{s,g}$ $AOC_{s,g}$	AD operating cost (US\$/yr)
CE	capture efficiency	$CCC_{b1,g}$	• •
CEC	capital equipment charge	$CEC_{b1,g}$ $CEC_{b1,g}$	compressor capital cost (US\$/yr) compressor environmental cost (kg CO ₂ eq/day)
CF	capital charge factor		compressor operating cost (US\$/yr)
$Dist_{b1,g}$	distance between AD in local region and MEA in petro-	$COC_{b1,g}$ $E_{b1,g}^{compressor}$	energy consumption in compressor (kWh)
Dist _{01,g}	chemical industry (km)	□ _{b1,g} □MEA	
E^{BSM1}	energy consumption in BSM1 (kWh/day)	E_{sc}^{MEA}	energy consumption in MEA (kWh/day)
E^{BSM2}	energy consumption in BSM2 (kWh/day)	$ESEC_{h,sc}$	existing SMR environmental cost (kg CO ₂ eq/day)
EC ^{kWh.MJ}	energy conversion (kWh/MJ)	$HPC_{h,sc}$	hydrogen purchase cost (US\$/yr)
	wh energy conversion (kWh/MMBtu)		MEA capital cost (US\$/yr)
ECS		$MOC_{b2,sc}$	MEA operating cost (US\$/yr)
EER ^{MEA}	energy consumption in SMR (kWh/kg of H ₂)	$NEEC_h$	NG extraction environmental cost (kg CO ₂ eq/day)
EEK	electricity energy reference net consumption (kWh/kWh	$PCC_{b1,g}$	pipeline capital cost (US\$/yr)
E D compress	biomethane output)	$POC_{b1,g}$	pipeline operating cost (US\$/yr)
ER ^{compresse}		$PSEC_{h,sc}$	predicted SMR environmental cost (kg CO ₂ eq/day)
ER ^{MEA}	energy reference net consumption (kWh/kg of bio-	$SCC_{h,sc}$	SMR capital cost (US\$/yr)
HALAD	methane)	$SOC_{h,sc}$	SMR operating cost (US\$/yr)
ERWWTP-	1 , , ,	TAC	total annual cost (US\$/yr)
EU	energy use (kWh/kg)	TAC^{first}	total annual cost in first stage (US\$/yr)
FCcompress		TAC^{second}	total annual cost in second stage (US\$/yr)
FC^{MEA}	fraction of MEA capital cost	TEC	total environmental cost (kg CO ₂ eq/day)
$FC^{pipeline}$	fraction of pipeline capital cost	TEC^{first}	total environmental cost in first stage (kg CO ₂ eq/day)
FCOC ^{AD,N}	AEA facility capital and operating cost for producing bio-	TEC^{second}	total environmental cost in second stage (kg CO ₂ eq/day)
	methane (US\$/day)	$totalx_{b1,g}$	generated total biogas from AD (kg/day)
GES	greenhouse gas emission score (kg CO ₂ eq/kg of NG)	$totalx_{b2,sc}$	generated total biomethane flow rate (kg/day)
GECP	greenhouse gas emitted from coal power plant (CO_2 eq kg/	$x_{b1,g}$	biogas flow rate from AD to transportation mode (kg/day)
	kWh)	$x_{b1',g}$	biogas flow rate to meet AD and AD affiliates energy
GEGP	greenhouse gas emitted from gas combined power plant	01,8	consumption (kg/day)
	(CO ₂ eq kg/kWh)	$x_{b2,sc}$	biomethane flow rate from MEA to SMR (kg/day)
GWPNG	global warming potential for NG extraction (grams of CO ₂	$x_{b2,sc}$ $x_{b2',sc}$	biomethane flow rate to meet MEA and MEA affiliates
	eq/MJ)	02,30	energy consumption (kg/day)
HBM	hydrogen production cost from biomethane (US\$/kg)	χ., -	sludge flow rate (kg/day)
НВМС	hydrogen to biomethane conversion factor (kg of	$x_{s,g}$ $x1_{h,sc}$	hydrogen production flow rate from NG (kg/day)
	, , ,	$\lambda_{h,sc}$	injuration production now rate from NO (kg/day)

Download English Version:

https://daneshyari.com/en/article/7045074

Download Persian Version:

https://daneshyari.com/article/7045074

<u>Daneshyari.com</u>