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a  b  s  t  r  a  c  t

Prony  analysis  has  been  applied  in  power  system  oscillation  identification  for decades.  For  a  single  PMU
signal  with  30 Hz  sampling  rate,  merely  applying  Prony  analysis  cannot  give  accurate  results  of  oscillating
modes  of  power  systems.  This  paper  presents  an  analysis  to show  the  effect  of  sampling  rate  on  estima-
tion  accuracy  and  the  mitigation  methods  to obtain  accurate  estimation.  The  methods  include  sampling
rate  reduction  and  multiple-signal  Prony  analysis.  For  multiple-signal  Prony  analysis,  this  paper  proposes
a  distributed  Prony  analysis  algorithm  using  consensus  and  subgradient  update.  This  algorithm  can  be
applied  to  multiple  signals  from  multiple  locations  collected  at the  same  period  of  time.  This  algorithm
is  scalable  and can handle  a  large-dimension  of PMU data  by solving  least  square  estimation  problems
with  small  sizes  in  parallel  and  iteratively.  Real-world  PMU  data  are  used  for  analysis  and  validation.
The  proposed  distributed  Prony  analysis  shows  being  robust  against  sampling  rate  and  generates  recon-
structed  signals  with  better  matching  degree  compared  to the conventional  Prony  analysis  for  multiple
signals.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A power system is a massive system that can be perturbed by
load changes, generator trips, faults or networks changes. Power
system oscillations are common issues. To mitigate oscillations,
oscillations should be identified and studied in a timely manner.
There are two separate approaches to identify power system oscil-
lations. The first approach is based on detailed dynamic model
of the system such as: eigenvalue analysis or state space model-
ing [1]. Detailed modeling of a huge complicated power system is
challenging and prone to errors. The second approach is based on
measurements to identify oscillation modes. Measurement-based
approach has been adopted by control engineers in practice. For
example, equivalent system models will be constructed based on
the measurement and further control strategies will be developed
based on the identified system models.

With phasor measurement unit (PMU) data collected, elec-
tromechanical oscillation modes can be identified from these
measurements. Several measurement-based system identifica-
tion have been proposed for PMU  data-based estimation, such
as Kalman filters [2–4], least square estimation [5], and sub-
space algorithm [6]. Prony analysis is one of the most common

∗ Corresponding author. Tel.: +1 813 974 2031; fax: +1 813 974 5250.
E-mail address: linglingfan@usf.edu (L. Fan).

measurement-based identification approaches to identify oscilla-
tory modes. Prony analysis has been introduced by Hauer et al in
power systems in 1990 [7,8]. The main idea is to directly estimate
the frequency, damping and phase of modal components of a mea-
sured signal. An extension to Prony analysis is then introduced
which allowed multiple signals to be analyzed at the same time
resulting in one set of oscillatory modes [9].

Since then, Prony analysis has been applied in power system
oscillation identification for decades. For PMU  data with 30 Hz
sampling rate, it is found that merely applying Prony analysis can-
not give accurate results of oscillating modes of power systems.
Zhou et al. have identified this issue in [10,11] and provided a
solution. By re-sampling the PMU  data to a lower sampling rate,
the estimation will be more accurate. In this paper, an analysis is
presented to show the effect of sampling rate on accuracy.

Mitigation methods are also presented in this paper to obtain
accurate estimation. The two  mitigation methods investigated
include sampling rate reduction and multiple-signal Prony analysis.
For multiple-signal Prony analysis, scalability is an issue given the
large size of PMU  data. A distributed algorithm is proposed in this
paper to handle the issue of scalability. The objective of the algo-
rithm is to have multiple Phasor Data Centers (PDCs) to conduct
estimation at the same time. These PDCs will only utilize the local
PMU  data with limited information exchange from other PDCs. The
computation effort is thus drastically reduced for each computing
agent.
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Application of distributed optimization techniques has recently
been introduced in system modes identification [12–14]. For exam-
ple, in [12], distributed Prony analysis using alternating direction
method of multipliers (ADMM)  has been combined with central-
ized Prony method to estimate the slow frequency eigenvalues.
Simulation data generated by PST [15] toolbox of IEEE 39-bus sys-
tem is used to conduct Prony analysis.

While [13,12] have discussed the ADMM implementation, many
details on Prony analysis have not been elaborated, e.g., sampling
rate effect and validation through signal reconstruction. Further,
the PMU data in [13] come from computer simulation. In this paper,
real-world PMU  data from Eastern Interconnection will be used for
tests. The real-world PMU  data has more complex characteristics.

This paper will develop a distributed Prony analysis algorithm
using consensus and subgradient update. This algorithm can be
applied to multiple signals from multiple locations collected the
same period of time. This algorithm can handle a large-dimension
of PMU data by solving least square estimation (LSE) problems
with small sizes in parallel and iteratively. Moreover, convergence
analysis is carried out to examine convergence. Robustness of the
algorithm against sampling rate will also be examined. The rest of
the paper is as follows: Section 2 describes the fundamentals of
Prony analysis. An analysis of effect of sampling rate on estimation
is presented in Section 3. Distributed Prony analysis including the
general description and convergence analysisis described in Section
4. Section 5 presents case study results. Conclusion is presented in
Section 6.

2. Fundamentals of Prony analysis

Consider a Linear-Time Invariant (LTI) system with the initial
state of x(t0)=x0 at the time t0, if the input is removed from the
system, the dynamic system model can be represented as [16]:

ẋ(t) = Ax(t) (1)

y(t) = Cx(t) (2)

where y ∈ R  is defined as the output of the system, x ∈ R
n is the

state of the system, A ∈ R
n×n and C ∈ R

1×n are system matrices.
The order of the system is defined by n. If the �i, pi, and qi are the
i-th eigenvalues, right eigenvectors, and left eigenvectors of n × n
matrix A, respectively, the (1) can be solved as:

x(t) =
n∑

i=1

(qT
i x0)pie

�it

=
n∑

i=1

Rix0e�it

(3)

where x0 is the initial state and Ri = piq
T
i

is a residue matrix. Based
on (2), the y(t) can be expressed as:

y(t) =
n∑

i=1

CRix0e�it . (4)

Prony analysis directly estimates the parameters for the expo-
nential terms in (4) by defining a fitting function in a basic form
of:

ŷ(t) =
n∑

i=1

Bie
�it cos(2�fit + ϕi) (5)

The observed or measured y(t) consists of N samples which are
equally spaced by �t  as: y(tk) = y(k), k = 1, . . . , N − 1. The basic
assumption is to consider the signal record to be noise free and

the order of the system can be set as: n = N/2 [7]. Therefore, (5) can
be recast in the exponential form as:

ŷ(tk) = R

(
n∑

i=1

Bie
�ik�t

)

= R

(
n∑

i=1

Biz
k
i

)
, k = 1, ..., N

(6)

where N is the number of samples, zi are the eigenvalues of the
system in discrete time domain, and Bi is the residue of zi. zi can be
expressed as:

zi = e�i�t (7)

Due to the fact that k = 1, . . . , N, (6) can be expressed in matrix form
as:⎡
⎢⎢⎢⎢⎣

B1z0
1 + ... + Bnz0

n

B1z1
1 + ... + Bnz1

n

...

B1zN−1
1 + ... + BnzN−1

n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y(0)

y(1)
...

y(N − 1)

⎤
⎥⎥⎥⎦ . (8)

Or in a simple form: ZB = Y as shown in (9).⎡
⎢⎢⎢⎢⎣

z0
1 z0

2 · · · z0
n

z1
1 z1

2 · · · z1
n

...
...

...
...

zN−1
1 zN−1

2 · · · zN−1
n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

B1

B2

...

Bn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y(0)

y(1)
...

y(N − 1)

⎤
⎥⎥⎥⎦ (9)

As the zi are the roots of the characteristic polynomial function of
the system, in order to find the zi, the coefficients of the polynomial
need to be found first. The polynomial is formed as:

zn − (a1zn−1 + a2zn−2 + ... + anz0) = 0. (10)

While the roots zi might be complex numbers, the system poly-
nomial coefficients ai are real numbers. This feature helps develop
algorithms since real numbers will be handled by computer algo-
rithms while complex numbers cannot be directly handled.

From (10), we  have

zn = a1zn−1 + a2zn−2 + ... + anz0. (11)

Further, a linear prediction model (12) can be formulated since y(k)
is the linear combination of zi(k) based on (6). Therefore,

y(n) = a1y(n − 1) + a2y(n − 2) + ... + any(0). (12)

Enumerate the signal samples from n step to N step, we  have
(13): Y = Da.⎡
⎢⎢⎢⎢⎢⎣

y(n)

...

y(n + k)

...

y(N)

⎤
⎥⎥⎥⎥⎥⎦

︸  ︷︷  ︸
Y

=

⎡
⎢⎢⎢⎢⎢⎣

y(n − 1) y(n − 2) · · · y(0)

...
...

. . .
...

y(n + k − 1) y(n + k − 2) · · · y(k)

...
...

. . .
...

y(N − 1) y(N − 2) · · · y(N − n)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷  ︸
D

⎡
⎢⎢⎢⎢⎢⎣

a(1)

...

a(k)

...

a(n)

⎤
⎥⎥⎥⎥⎥⎦

︸  ︷︷  ︸
a

(13)

Remarks: The dimension of D matrix is N − n + 1, n. If n < N/2,
this is an over-determined linear equation and will be solved by
the least square estimation (LSE). If n > N/2, the linear equations are
under-determined and there are multiple solutions for a. When the
D matrix is square, there is a unique solution of a and the match will
be the best for. That is the reason that n is selected to be close to
N/2 [7].
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