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H I G H L I G H T S

• A new application of coolant for the fast neutron reactor was proposed.

• 50 times of heat transfer enhancement could be obtained.

• The effects of various operating and design parameters are quantified.
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A B S T R A C T

The fast neutron reactor, one of the promising generation-IV nuclear reactors, particularly requires its coolant to
have a strong capacity of transferring heat allied with a weak ability of moderating neutrons, and thus a new
scheme of applying the dispersed flow as the coolant is presented in this study. Such a flow was generated by
injecting subcooled droplets into the overheated steam with the help of a nozzle, simply referred to as the nozzle-
atomized dispersed flow. The obtained heat transfer coefficients maintain high values, vary from 40 to 90 kW/
m2/K and are greatly improved as high as 50 times compared to those of the traditional annular-mist flow. The
result implies that the nozzle-atomized dispersed flow, especially in the saturated boiling region, meets the heat
transfer requirements of the coolant for a fast neutron reactor. Through meticulous analyses, appropriately
higher inlet pressure, increased wall heat flux, larger inlet quality, boosted mass flow rate and shorter mix
chamber length were found to either reinforce the heat transfer process or shorten the boiling regions along the
tube. The standard database on hydrodynamic and heat transfer characteristics of the nozzle-atomized dispersed
flow under violent conditions at the pressure of ∼7MPa and the mass flow rate of ∼250 kg/m2/s was estab-
lished and laid foundations for further engineering design.

1. Introduction

In developing advanced reactors, the fast neutron reactor is a hot
research direction due to its exclusive ability of proliferating fuel and
evolving long-life radioactive fission products. However, popular
coolants for the fast neutron reactor, e.g. sodium, lead, lead-bismuth
eutectic (LBE) and other liquid metals, could lead to many problems,
such as high price, seismic problem, eroding wall materials, exploding
and so on [1]. By contrary, using the high-void-fraction dispersed water
flow could relieve these problems. This flow has a weak ability of
moderating neutrons, which exactly meets the requirements of the fast

neutron energy spectrum. Additionally, dispersed flow cooling has a
high heat transfer efficiency capable of attaining lower wall tempera-
ture than the single-phase liquid water that has already been used as the
moderator and coolant for the typical pressurized water reactor (PWR).
More importantly, this ideal coolant could reduce the system pressure
from 15.5 to 7MPa, minimizing susceptibilities of the reactor [2].
Considering the special properties of the dispersed flow, its application
as the coolant for the fast neutron reactor is proposed in this study.

There are two kinds of dispersed flows: one is the annular-mist flow,
directly-heated by a boiler, and the other is the nozzle-atomized dis-
persed flow investigated in this study. However, a thorough
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Nomenclature

DP steam pressure drop (MPa)
hin steam enthalpy entering the test section (kJ/kg)
h i1, steam enthalpy entering preheater I (kJ/kg)
h z( ) mainstream enthalpy in the test section (kJ/kg)
h z( )s saturated steam enthalpy in the test section (kJ/kg)
I heating current (A)
L effective length of the test section (mm)
P steam pressure (MPa)
qc total heat loss of the test section (kW)
qs wall heat flux (kW/m2)
qr vaporization latent heat of water (kJ/kg)
Q mass flow rate (kg/ m2/s)
r radius of the test section (mm)
Ri inside radius of the test section (mm)
Ro outside radius of the test section (mm)
Ti1 inlet steam temperature of preheater I (°C)
To1 outlet steam temperature of preheater I (°C)
Ti2 inlet steam temperature of preheater II (°C)
To2 outlet steam temperature of preheater II (°C)
To1s inlet steam temperature of the mix chamber (°C)
To2s inlet water temperature of the mix chamber (°C)
T5 outlet steam temperature of the test section (°C)
T z( )wi inner wall temperature along the test section (°C)
T z( )wo outside wall temperature along the test section (°C)

−T z( )j 1 inner layer wall temperature along the test section (°C)
T z( )j outer layer wall temperature along the test section (°C)
T z( )b bulk steam temperature along the test section (°C)
U heating voltage (V)
z axial position along the test section (mm)

Greek letters

η heat balance efficiency of the test section
η1 thermal balance efficiency of preheater I
λ thermal conductivity of the test section (kW/m/°C)
ϕ volume heat flux (kW/m3)
Xi inlet quality of the test section
Xe thermodynamics vapor quality along the test section
σ uncertainty of the measurement

Abbreviations

HTC z( ) convective heat transfer coefficient vs. z (kW/m2/K)
HTC X( )e convective heat transfer coefficient vs. Xe (kW/m2/K)

Subscripts

1 preheater I
2 preheater II
t the test section
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Fig. 1. Schematic diagram of the experimental loop.
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