ELSEVIER

Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

Research Paper

Experimental and comparison study on heat and moisture transfer characteristics of desiccant coated heat exchanger with variable structure sizes

X.Y. Sun, Y.J. Dai*, T.S. Ge, Y. Zhao, R.Z. Wang

Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China Engineering Research Centre of Solar Power and Refrigeration, MOE, China

HIGHLIGHTS

- Three types of novel DCHEs with variable structure sizes are tested and compared.
- · Ranks of influence factors in experiments are obtained by using Taguchi method.
- Higher surface compactness of DCHE means higher heat and mass transfer capacity.
- Heat and mass transfer coefficients are functions of pressure drop.

ARTICLE INFO

Keywords: Desiccant-coated heat exchanger Heat transfer Mass transfer Pressure drop Variable structure parameters

ABSTRACT

Desiccant-coated heat exchanger (DCHE) is a novel component for handling both sensible and latent heat assisted by desiccant materials. In this paper, three types of DCHEs with the same transfer surface area, DCHE A (fin pitch 2 mm, fin depth 44 mm), DCHE B (fin pitch 3 mm, fin depth 66 mm) and DCHE C (fin pitch 4 mm, fin depth 88 mm), are fabricated to make out the relationships between structure sizes and performance characteristics. The transient heat and moisture transfer performance, as well as the pressure drop passing through DCHEs, are tested and compared in depth. By using Taguchi method, the ranks of influence factors in heat and mass transfer performances are obtained. With the same transfer surface area but different surface compactness, three DCHEs show different heat and mass transfer capacities and different pressure drops. DCHE A with the highest surface compactness shows the highest heat and mass transfer capacity, while the highest pressure drop is shown as deficiency. DCHE C with the smallest surface compactness shows the highest heat recovery efficiency and the lowest pressure drop. Heat transfer coefficient of DCHE A is 14.9% greater than DCHE B, 19.6% greater than DCHE C in dehumidification process. The moisture adsorbed value of DCHE A is 9.6% greater than DCHE B, 18.2% greater than DCHE C. Pressure drop of DCHE A is 50% larger than DCHE B, and 90% larger than DCHE C. The correlations of Nusselt number and Euler number of three DCHEs are summarized by fitting the experimental data.

1. Introduction

Nowadays, the load of power consumption of air-conditioning system enhances due to the heavy demand of high indoor air quality [1]. The construction, operation and maintenance of buildings accounts for 40% of the total global energy consumption, which means exploitation of alternative energy sources and energy savings become key issues [2]. In buildings, controlling indoor humidity at an appropriate level is crucial since this directly affects building occupants' thermal comfort and the operating efficiency of building air conditioning

installations [3]. In recent years, there have been extensive interests on desiccant air conditioning as an alternative method to achieve air temperature and humidity control in occupied space due to its benefits of high energy efficiency [4]. Solid desiccant, as a common type of dehumidification system, represents a viable and beneficial alternative, thanks for their low electricity consumption and usage of low-grade heat source [5]. According to the configured methods, solid desiccant dehumidification systems can be divided into the rotary desiccant wheel [6], the fluidized bed [1] and desiccant coated heat exchanger [7].

E-mail address: yjdai@sjtu.edu.cn (Y.J. Dai).

^{*} Corresponding author.

A the total heat transfer area, m^2 the minimum free-flow area for an inline arrangement, m^2 the surface area density, m^2/m^3 the surface area density, m^2/m^3 a mass transfer driving force, dimensionless a mass transfer driving force, dimensionless a a air avg average dehumidity ratio of air, kg water vapor/kg dry air bydraulic diameter, m DE dehumidification process in inlet frectiveness of heat exchanger, dimensionless in inlet ϵ_m effectiveness of moisture removal, dimensionless g mass transfer coefficient, $kg/(m^2 \cdot s)$ are the attransfer coefficient, $kg/(m^2 \cdot s)$ are the attransfer coefficient, $kg/(m^2 \cdot s)$ are the experimental data obtained for optimization of control factors k heat transfer coefficient, k heat k heat transfer coefficient, k heat k hea	Nomenclature			dimensionless
$ A_{O} $			μ	the dynamic viscosity coefficient, N · s/m ² .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Α	the total heat transfer area, m ²	λ	the heat conductivity coefficient, W/(m K)
α the surface area density, m^2/m^3 B mass transfer driving force, dimensionless a air c_p specific heat, $J/(kg K)$ avg average d humidity ratio of air, kg water vapor/kg dry air d desiccant D hydraulic diameter, m DE dehumidification process D_{wa} the diffusion coefficient of vapor in air, $kg/(m s)$ i imagined surface ε effectiveness of heat exchanger, dimensionless in inlet ε_m effectiveness of moisture removal, dimensionless l latent g mass transfer coefficient, $kg/(m^2 \cdot s)$ max maximum g proportional constant of Newton's second law of motion, ge = 1 in International System of Units, dimensionless min min min h enthalpy, kJ/kg RE regeneration process h^2 the experimental data obtained for optimization of control factors s contact surface k heat transfer coefficient, $W/(m^2 \cdot K)$ ∞ infinity area n the number of test runs, dimensionless ∞ ∞ Abbreviations	A_O	the minimum free-flow area for an inline arrangement, m ²		
B mass transfer driving force, dimensionless a air c_p specific heat, J/(kg·K) avg average d humidity ratio of air, kg water vapor/kg dry air d desiccant D hydraulic diameter, m DE dehumidification process $D_{w,a}$ the diffusion coefficient of vapor in air, kg/(m·s) i imagined surface ε effectiveness of heat exchanger, dimensionless in inlet ε_m effectiveness of moisture removal, dimensionless l latent g mass transfer coefficient, kg/(m²-s) max maximum g_c proportional constant of Newton's second law of motion, gc_c = 1 in International System of Units, dimensionless min minimum out outlet h enthalpy, kJ/kg RE regeneration process \hbar^2 the experimental data obtained for optimization of control factors s contact surface k heat transfer coefficient, W/(m² · K) ∞ infinity area k heat transfer coefficient, W/(m² · K) ∞ infinity area ΔM_{DE} the dehumidification results per unit time air, kg/h P pressure, Pa DCHE	A_{fr}	the frontal area, m ²	Subscripts and superscripts	
c_p specific heat, J/(kg·K)avgaverage d humidity ratio of air, kg water vapor/kg dry air d desiccant D hydraulic diameter, mDEdehumidification process $D_{w,a}$ the diffusion coefficient of vapor in air, kg/(m·s) i imagined surface ε effectiveness of heat exchanger, dimensionlessininlet ε effectiveness of moisture removal, dimensionless 1 latent g mass transfer coefficient, kg/(m²-s)maxmaximum g_c proportional constant of Newton's second law of motion, g_c minminmin g_c proportional constant of Newton's second law of motion, g_c outoutoutlet h enthalpy, kJ/kgREregeneration process h enthalpy, kJ/kgREregeneration process h the experimental data obtained for optimization of control factors s contact surface k heat transfer coefficient, W/(m² · K) ∞ infinity area n the number of test runs, dimensionless m mass flow rate, kg/sAbbreviations ΔM_{DE} the dehumidification results per unit time air, kg/h P pressure, PaDCHEdesiccant coated heat exchanger Q quantity of heat, WEuEuler number P Prandtl number P Prandtl number P Prandtl number P Prandtl number P adsorption heat, kJ/kgShSherwood	α	the surface area density, m ² /m ³		
d humidity ratio of air, kg water vapor/kg dry air d desiccant D hydraulic diameter, m DE dehumidification process $D_{w,a}$ the diffusion coefficient of vapor in air, kg/(ms) i imagined surface ε effectiveness of heat exchanger, dimensionless in inlet ε effectiveness of moisture removal, dimensionless 1 latent g mass transfer coefficient, kg/(m²-s) max maximum g_c proportional constant of Newton's second law of motion, min minimum g_c = 1 in International System of Units, dimensionless out out et h enthalpy, kJ/kg RE regeneration process h^2 the experimental data obtained for optimization of control factors s contact surface k heat transfer coefficient, W/(m² · K) ∞ infinity area n the number of test runs, dimensionless mass flow rate, kg/s Abbreviations ΔM_{DE} the dehumidification results per unit time air, kg/h DCHE desiccant coated heat exchanger Q quantity of heat, W Eu Euler number R r <td>В</td> <td>mass transfer driving force, dimensionless</td> <td>a</td> <td>air</td>	В	mass transfer driving force, dimensionless	a	air
d humidity ratio of air, kg water vapor/kg dry airddesiccantDhydraulic diameter, mDEdehumidification process $D_{w,a}$ the diffusion coefficient of vapor in air, kg/(m·s)iimagined surface ε effectiveness of heat exchanger, dimensionlessin inlet ε_m effectiveness of moisture removal, dimensionless1latent g mass transfer coefficient, kg/(m²-s)maxmaximum g_c proportional constant of Newton's second law of motion, g_c min minimum g_c 1 in International System of Units, dimensionlessoutoutlet h enthalpy, kJ/kgREregeneration process h^2 the experimental data obtained for optimization of control factors s contact surface k heat transfer coefficient, W/(m² · K) ∞ infinity area n the number of test runs, dimensionless m mass flow rate, kg/sAbbreviations ΔM_{DE} the dehumidification results per unit time air, kg/h p pressure, PaDCHEdesiccant coated heat exchanger Q quantity of heat, WEuEuler number P relative humidity,%NTUnumber of transfer unit P relative humidity,%NTUnumber of transfer unit P relative humidity, m/sRedReynolds number P relative humidity, m/sRedReynolds number P relative humidity, m/sRedReynolds number P	c_p	specific heat, J/(kg·K)	avg	average
$D_{w,a}$ the diffusion coefficient of vapor in air, kg/(m·s) i imagined surface ε effectiveness of heat exchanger, dimensionless in inlet ε effectiveness of heat exchanger, dimensionless in inlet ε effectiveness of moisture removal, dimensionless 1 latent g mass transfer coefficient, kg/(m²·s) max maximum g _c proportional constant of Newton's second law of motion, g _c = 1 in International System of Units, dimensionless min minimum g _c = 1 in International System of Units, dimensionless RE regeneration process h enthalpy, kJ/kg RE regeneration process h enthalpy, kJ/kg RE regeneration process k heat transfer coefficient, W/(m²·K) ∞ infinity area k heat transfer coefficient, W/(m²·K) ∞ infinity area n mass flow rate, kg/s Abbreviations ΔMDE the dehumidification results per unit time air, kg/h DCHE desiccant coated heat exchanger Q quantity of heat, W Eu Eu Euler number RH relative humidity,% NTU number of t	2	humidity ratio of air, kg water vapor/kg dry air	d	desiccant
$D_{w,a}$ the diffusion coefficient of vapor in air, kg/(m·s) i imagined surface ε effectiveness of heat exchanger, dimensionless in inlet ε_m effectiveness of moisture removal, dimensionless 1 latent g mass transfer coefficient, kg/(m²·s) max maximum g_c proportional constant of Newton's second law of motion, gc = 1 in International System of Units, dimensionless out outlet h enthalpy, kJ/kg RE regeneration process h^2 the experimental data obtained for optimization of control factors s contact surface k heat transfer coefficient, W/(m²·K) ∞ infinity area n the number of test runs, dimensionless w water m mass flow rate, kg/s Abbreviations ΔM_{DE} the dehumidification results per unit time air, kg/h DCHE desiccant coated heat exchanger Q quantity of heat, W Eu Eu Euler number RH relative humidity,% NTU number of transfer unit T temperature, °C Nu Nu Nusselt number V air	D	hydraulic diameter, m	DE	dehumidification process
εeffectiveness of heat exchanger, dimensionlessininlet $ε_m$ effectiveness of moisture removal, dimensionless1latentgmass transfer coefficient, $kg/(m^2 \cdot s)$ maxmaximum g_c proportional constant of Newton's second law of motion, g_c minminimum g_c proportional constant of Newton's second law of motion, g_c minminimum g_c proportional constant of Newton's second law of motion, g_c minminimum g_c prin international System of Units, dimensionlessoutoutlet h enthalpy, kJ/kg REregeneration process h enthalpy, kJ/kg kJ/kg k h enthalpy, kJ/kg kJ/kg k h enthalpy, kJ/kg kJ/kg k h enthalpy, kJ/kg kJ/kg kJ/kg kJ/kg kJ/kg kJ/kg kJ/kg h enthalpy, $kJ/$	$D_{w,a}$	the diffusion coefficient of vapor in air, kg/(m·s)	i	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		effectiveness of heat exchanger, dimensionless	in	inlet
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ε_m	effectiveness of moisture removal, dimensionless	1	latent
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		mass transfer coefficient, kg/(m ² ·s)	max	maximum
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g_c	proportional constant of Newton's second law of motion,	min	minimum
h enthalpy, kJ/kg RE regeneration process h^2 the experimental data obtained for optimization of control factors s contact surface k heat transfer coefficient, W/(m² · K) ∞ infinity area n the number of test runs, dimensionless Abbreviations m mass flow rate, kg/s Abbreviations ΔM_{DE} the dehumidification results per unit time air, kg/h DCHE desiccant coated heat exchanger Q quantity of heat, W Eu Euler number RH relative humidity,% NTU number of transfer unit T temperature, °C Nu Nusselt number V the total volume of the heat exchanger, m³ Pr Prandtl number v air velocity, m/s Red Reynolds number v adsorption heat, kJ/kg Sh Sherwood number v adsorption heat, kJ/kg Sh Sherwood number v operating cycle time, s SNR Signal to noise ratio	-0	$g_c = 1$ in International System of Units, dimensionless	out	outlet
factors p w water p p water p p p water p	h		RE	regeneration process
kheat transfer coefficient, W/(m² · K) ∞ infinity areanthe number of test runs, dimensionlessmmass flow rate, kg/sAbbreviations ΔM_{DE} the dehumidification results per unit time air, kg/hPpressure, PaDCHEdesiccant coated heat exchangerQquantity of heat, WEuEuler numberRHrelative humidity,%NTUnumber of transfer unitTtemperature, °CNuNusselt numberVthe total volume of the heat exchanger, m³PrPrandtl numberνair velocity, m/sRedReynolds numberηheat recovery efficiency, dimensionlessScSchmidt numberγadsorption heat, kJ/kgShSherwood numberτoperating cycle time, sSNRSignal to noise ratio	\hbar^2	the experimental data obtained for optimization of control	S	contact surface
n the number of test runs, dimensionless m mass flow rate, kg/s ΔM_{DE} the dehumidification results per unit time air, kg/h P pressure, Pa DCHE desiccant coated heat exchanger Q quantity of heat, W Eu Euler number NTU number of transfer unit T temperature, °C Nu Nusselt number V the total volume of the heat exchanger, m³ Pr Prandtl number v air velocity, m/s Red Reynolds number v also retions v adsorption heat, kJ/kg Sh Sherwood number v also grating cycle time, s SNR Signal to noise ratio		factors	w	water
m mass flow rate, kg/sAbbreviations ΔM_{DE} the dehumidification results per unit time air, kg/hPpressure, PaDCHEdesiccant coated heat exchangerQquantity of heat, WEuEuler numberRHrelative humidity,%NTUnumber of transfer unitTtemperature, °CNuNusselt numberVthe total volume of the heat exchanger, m³PrPrandtl number ν air velocity, m/sRedReynolds number η heat recovery efficiency, dimensionlessScSchmidt number γ adsorption heat, kJ/kgShSherwood number τ operating cycle time, sSNRSignal to noise ratio	k	heat transfer coefficient, W/(m ² · K)	∞	infinity area
ΔM_{DE} the dehumidification results per unit time air, kg/h P pressure, Pa DCHE desiccant coated heat exchanger Q quantity of heat, W Eu Euler number NTU number of transfer unit T temperature, °C Nu Nusselt number V the total volume of the heat exchanger, m³ Pr Prandtl number ν air velocity, m/s Red Reynolds number ν air velocity, m/s Red Reynolds number ν heat recovery efficiency, dimensionless Sc Schmidt number ν adsorption heat, kJ/kg Sh Sherwood number ν operating cycle time, s	n	the number of test runs, dimensionless		·
P pressure, Pa DCHE desiccant coated heat exchanger Q quantity of heat, W Eu Euler number RH relative humidity,% NTU number of transfer unit T temperature, $^{\circ}$ C Nu Nusselt number V the total volume of the heat exchanger, $^{\circ}$ 3 Pr Prandtl number $^{\circ}$ 4 Reynolds number $^{\circ}$ 5 Red Reynolds number $^{\circ}$ 6 Accordingly dimensionless $^{\circ}$ 7 Adsorption heat, kJ/kg Sh Sherwood number $^{\circ}$ 7 operating cycle time, s SNR Signal to noise ratio	m	mass flow rate, kg/s	Abbreviations	
Q quantity of heat, W Eu Euler number RH relative humidity,% NTU number of transfer unit T temperature, $^{\circ}$ C Nu Nusselt number V the total volume of the heat exchanger, 3 Pr Prandtl number $^{\nu}$ air velocity, $^{\prime}$ m/s Red Reynolds number $^{\prime}$ heat recovery efficiency, dimensionless Sc Schmidt number $^{\prime}$ adsorption heat, kJ/kg Sh Sherwood number $^{\prime}$ operating cycle time, s SNR Signal to noise ratio	ΔM_{DE}	the dehumidification results per unit time air, kg/h		
RH relative humidity,% NTU number of transfer unit T temperature, $^{\circ}$ C Nu Nusselt number V the total volume of the heat exchanger, 3 Pr Prandtl number $^{\nu}$ air velocity, $^{\prime}$ m/s Red Reynolds number $^{\prime}$ heat recovery efficiency, dimensionless Sc Schmidt number $^{\prime}$ adsorption heat, kJ/kg Sh Sherwood number $^{\prime}$ operating cycle time, s SNR Signal to noise ratio	P	pressure, Pa	DCHE	desiccant coated heat exchanger
T temperature, °C Nu Nusselt number V the total volume of the heat exchanger, m³ Pr Prandtl number ν air velocity, m/s Red Reynolds number η heat recovery efficiency, dimensionless Sc Schmidt number γ adsorption heat, kJ/kg Sh Sherwood number τ operating cycle time, s SNR Signal to noise ratio	Q	quantity of heat, W	Eu	Euler number
Vthe total volume of the heat exchanger, m^3 PrPrandtl numberνair velocity, m/s RedReynolds numberηheat recovery efficiency, dimensionlessScSchmidt numberγadsorption heat, kJ/kg ShSherwood numberτoperating cycle time, sSNRSignal to noise ratio	RH	relative humidity,%	NTU	number of transfer unit
$ u$ air velocity, m/s Red Reynolds number $ \eta$ heat recovery efficiency, dimensionless Sc Schmidt number $ \gamma$ adsorption heat, kJ/kg Sh Sherwood number $ \tau$ operating cycle time, s SNR Signal to noise ratio	T	temperature, °C	Nu	Nusselt number
η heat recovery efficiency, dimensionless Sc Schmidt number $γ$ adsorption heat, kJ/kg Sh Sherwood number $τ$ operating cycle time, s SNR Signal to noise ratio	V	the total volume of the heat exchanger, m ³	Pr	Prandtl number
γ adsorption heat, kJ/kg Sh Sherwood number τ operating cycle time, s SNR Signal to noise ratio	ν	air velocity, m/s	Red	Reynolds number
τ operating cycle time, s SNR Signal to noise ratio	η	heat recovery efficiency, dimensionless	Sc	Schmidt number
	γ	adsorption heat, kJ/kg	Sh	Sherwood number
ρ density, kg/m ³	τ		SNR	Signal to noise ratio
	ρ	density, kg/m ³		
σ the ratio of minimum free-flow area to frontal area,	σ	the ratio of minimum free-flow area to frontal area,		

Desiccant coated heat exchanger (DCHE), which is fabricated by coating desiccant to conventional heat exchanger, has obtained more attention due to its benefits of handling both sensible and latent heat with the assistance of desiccant materials. Compared with other solid desiccant dehumidification components, DCHE overcomes the negative effect of adsorption heat by cycling cooling water in the heat exchanger, hence the overall performance of dehumidification can be improved significantly [8]. In DCHE, heat and moisture transfer occur simultaneously and interact with each other intensively in dehumidification and regeneration process [9]. Latent and sensible load of process air can be handled separately to provide comfortable supply air [10]. Moreover, the heat required to drive the regeneration process can come from low-grade heat resources, such as solar energy [11], waste heat of an industrial process [12], and rejected condensation heat from the air conditioning systems. The temperature difference between heat source and cold source temperature can dramatically decrease to approximately 30 °C [13]. By using waste heat recovery from exhausted air in regeneration process, the thermal coefficient of performance could be improved to 1.2, while the electrical coefficient of performance can reach about 13.83 [14]. Besides, DCHE can be operated all year round, for dehumidifying and cooling air in summer, and heating and humidifying air in winter [15]. Because of DCHE's low initial cost and high efficiency, combining DCHE with conventional air conditioning system can provide comfort air and be driven by low grade thermal energy, proving DCHE can be a good alternative for air source heat pump systems compared with desiccant wheel [16].

The most significant performance indexes of DCHEs are dehumidification amount and coefficient of performance. Important enhancements have been demonstrated to improve indicators from the

following aspects like desiccant materials, structure of heat exchanger and simulation analysis. Zheng et al. [17] in 2014 reviewed a total of 72 desiccant materials present in the literature for solid desiccant cooling systems, and the results showed that desiccant materials with "S type curve" adsorption isotherms can perform better. Zheng et al. [18] in 2015 conducted a study of four LiCl (10–40 wt%) supported silica gel composites for DCHE, and compared it with pure silica gel. Tatlier [19] in 2017 investigated the performances of zeolite and MOF coatings for adsorption cooling applications by modeling studies, revealing the superiority of the triazolyl phosphonate MOF over the zeolites, NaX, LiX and NaA. Different materials coated on different heat exchanger are tested, such as fin-tube air-to-water heat exchanger [7], crossflow air-to-air heat exchanger [20], finned flat-tube aluminum heat exchanger [21] and so on.

The other important aspect for improving the DCHE performance is the analysis and optimization of the heat and moisture transfer process. Because of desiccant coating and interior heat resource, the coupled heat and mass transfer characteristics is different from conventional fin and tube heat exchanger [22]. Li et al. [9] in 2015 presented a theoretical model to investigate the heat and mass transfer inside a DCHE, to account for heat conduction and mass diffusion in the desiccant felt as well. Ge et al. [23] in 2011 proposed a one dimensional gas side resistance model for a silica gel coated air to water heat exchangers. Munz et al. [20] in 2013 proposed and simulated a solar powered desiccant based cooling and dehumidification system. A 2-dimensional thermodynamic model implemented in Modelica was used to simulate the system performance.

The heat and mass transfer correlations are also gradually built. The correlations of Chilton-Colburn j-factor for the heat transfer and

Download English Version:

https://daneshyari.com/en/article/7045370

Download Persian Version:

https://daneshyari.com/article/7045370

<u>Daneshyari.com</u>