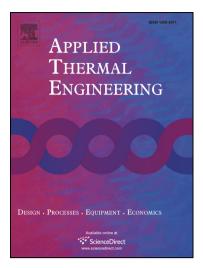
Accepted Manuscript

300 MW Boiler Design Study for Coal-fired Supercritical CO₂ Brayton Cycle

Wengang Bai, Yifan Zhang, Yu Yang, Hongzhi Li, Mingyu Yao


PII: S1359-4311(17)36220-8

DOI: https://doi.org/10.1016/j.applthermaleng.2018.01.110

Reference: ATE 11764

To appear in: Applied Thermal Engineering

Received Date: 26 September 2017 Revised Date: 29 January 2018 Accepted Date: 29 January 2018

Please cite this article as: W. Bai, Y. Zhang, Y. Yang, H. Li, M. Yao, 300 MW Boiler Design Study for Coal-fired Supercritical CO₂ Brayton Cycle, *Applied Thermal Engineering* (2018), doi: https://doi.org/10.1016/j.applthermaleng.2018.01.110

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

300 MW Boiler Design Study for Coal-fired Supercritical CO₂

Brayton Cycle

Wengang Bai, Yifan Zhang, Yu Yang, Hongzhi Li*, Mingyu Yao

National Energy R&D Center of Clean and High-efficiency Fossil-fired Power Generation

Technology, Xi'an Thermal Power Research Institute Co. Ltd, Xi'an, 710054, People's Republic

of China

Abstract: Supercritical CO₂ (S-CO₂) Brayton power cycle has been considered as a promising alternative choice of conventional steam cycle for coal-fired power plants. A conceptual design of the boiler is conducted for a 300 MW single reheated recompression S-CO₂ Brayton cycle for

coal-fired power plant with turbine inlet parameters of 32 MPa/600 °C/620 °C. The conventional

economizer (ECO) is replaced with the split heater (SH) to reduce the inlet temperature of cooling wall of the furnace as well as to recover the flue gas heat The technology adaption of S-CO₂

power cycle for coal-fired power plant has been evaluated in terms of specific design of the

300MW coal fired boiler as well as the whole thermodynamic cycle layout. The boiler design and off-design thermal calculation results show that the S-CO₂ boiler proposed in this paper can match

well with the entire coal-fired S-CO2 Brayton cycle power generation system and has a good

boiler variation performance.

Keywords: S-CO₂ boiler; Brayton cycle; conceptual design; heat transfer

1. Introduction

Coal is expected to remain the main fuel source of power generation for a long time in the

world[1,2]. Unfortunately, air pollution and global warming problems caused by SO₂, NO_x, CO₂

and dust emission from coal combustion should be seriously addressed [2-4]. Thus, it is of great

importance to increase energy conversion efficiency and in turn to reduce the fuel consumption

and air pollutants emission.

Up to now, steam Rankine cycle has dominated absolutely in coal power plants to convert

thermal energy to electricity. However, it is very difficult to improve the power conversion

efficiency further, as it is a great challenge to increase the turbine inlet steam temperature up to

Corresponding Author: Hongzhi Li, PhD.

Tel: +86-029-82001207; Fax: +86-029-82001204;

E-mail address: lihongzhi@tpri.com.cn

1

Download English Version:

https://daneshyari.com/en/article/7045675

Download Persian Version:

https://daneshyari.com/article/7045675

<u>Daneshyari.com</u>