FISEVIER

Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

Research Paper

Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV

S. Panchal^{a,*}, M. Mathew^b, R. Fraser^a, M. Fowler^b

- ^a Mechanical and Mechatronic Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- b Chemical Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

HIGHLIGHTS

- Designed and developed the battery thermal testing system.
- Developed ECT model using ANSYS Fluent.
- Studied the temperature and voltage profile at different discharge rates.
- Validated the model with the experimental data.

ARTICLE INFO

Keywords: Lithium-ion battery Electrochemical thermal model Thermal analysis ANSYS

ABSTRACT

Study of thermal performance in lithium-ion battery cell is crucial which directly affects the safety. Even though the operation of a lithium-ion battery cell is transient phenomena in most cases, most available thermal models for lithium-ion battery cell predicts only steady-state temperature fields. This paper presents a mathematical model to predict the transient temperature and voltage distributions of 18650 cylindrical lithium-ion battery at different discharge rates. For this, the 18650 cylindrical lithium-ion battery cell is tested inside the lab with an air-cooling method by four thermocouples mounted on the battery surface under four constant current discharge rates of 1 C, 2 C, 3 C, and 4 C in order to provide quantitative data regarding thermal behavior of lithium-ion batteries. Later, the numerical model is developed using ANSYS CFD software and it is found that the model predictions are in good agreement with experimental data for temperature and voltage profiles. The highest temperature is 46.86 °C at 4 C discharge rate as obtained from simulation. The results also show that the increased C-rates results in increased temperature on the principle surface of the battery.

1. Introduction

Increasing environmental awareness and depleting fuels sources are the main issues in the automotive industry and therefore, electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles (FCVs) are projected as one of the most sustainable solutions for future transport. These days, lithiumion batteries are gaining widespread acceptance in the development of EVs, HEVs, and PHEVs due to: (1) high specific energy and power densities [1]; (2) high nominal voltage and low self-discharge rate [2]; and (3) long cycle-life and no memory effect [3]. To extend the life of battery, precautions must be taken during discharging and charging since, for example exceeding voltage, current or power limits may result in battery cell damage. The possibility of thermal runaways also occurs if care is not properly taken [4]. Moreover, lithium-ion polymer

batteries must be carefully monitored and managed (electrically and thermally) to avoid safety (inflammability) and performance related issues [5–8].

There are various papers in the open literature available for battery thermal modeling, using different approaches such as artificial neural network [9–11], finite element model (FEM) [12] or lumped parameter model (LPM) [13], linear parameter varying (LPV) model [14], or partial differential equation (PDE) model [15], CFD models [16–18]. Battery modeling based on electrochemical equations provides a deep understanding of the physical and chemical process inside the battery which makes it useful when designing a cell, but high computational time makes these models improper for applications with high dynamics. The first electrochemical modeling approach to porous electrodes with battery applications was presented by Newman and Tiedemann in 1975 [19]. In the porous electrode theory, the electrode is treated as a

E-mail address: satyam.panchal@uwaterloo.ca (S. Panchal).

^{*} Corresponding author.

solid/electrolyte interfacial area per unit volume or active surface area per electrode unit volume for electron transfer reactions 11/cml A area Ins ⁻¹ System feet to appacity [J/kg °C] Specific heat for positive tab [J/kg kK] Specific heat for positive tab [J/kg kK] Concentration of lithium in solid phase [mol/m²] Concentration of lit	Nomenclature ∇ gradient operator				
suiface area per electrode unit volume for activo transfer reactions [1/cm] A area [n²] content [1/kg *C] specific heat capacity [1/kg *C] specific heat capacity [1/kg *C] specific heat or negative tab [1/kg *K] specific heat or negative tab [1/kg *K] specific heat for negative pelcoty phase [mol/m²] concentration of libitum in electrobly phase [mol/m²] maximum solid 11′ concentration for positive electrode [mol/m²] maximum solid 11′ concentration for positive electrode [mol/m²] reference diffusitivity for positive electrode [mol/m²] specific material in electrode [mol/m²] specific material	1.omene			•	
surface area per electrode unit volume for electron to transfor reactions $ L m $ area $ m^2 $ and $ m^2 $ area $ m^2 $ and $ m^2 $ specific heat capacity $ L m $ $ m^2 $ specific heat capacity $ L m $ $ m^2 $ specific heat capacity $ L m $ $ m^2 $ specific heat capacity $ L m $ $ m^2 $ specific heat for positive tab $ L M_R m $ $ m^2 $ specific heat for active tab $ L M_R m $ $ m^2 $ specific heat for active tab $ L M_R m $ $ m^2 $ concentration of limium in solid phase $ m L m $ specific heat for active zone $ L M_R m $ $ L m $ specific heat for active zone $ L M_R m $ $ L m $ specific heat for active zone $ L M_R m $ $ L m $ specific heat for active zone $ L M_R m $ $ L m $ specific heat for active zone $ L M_R m $ $ L m $ specific heat for active zone $ L M_R m $ $ L m $ specific heat for active zone $ L M_R m $ $ L m $ specific heat for active zone $ L M_R m $ $ L m $ specific heat for active zone $ L M_R m $ specifi	a_s	solid/electrolyte interfacial area per unit volume or active		= = =	
	-				
c_p specific heat capacity $ J/kg^*C $ c_p effective electrical conductivity for negative electrode $ S/c_p $ c_p effective electrical conductivity phase in electrode volume fraction of electrobyte phase in electrode occurration of lithium in solid phase $[mol/m^3]$ c_p volume fraction of electrobyte phase in electrode electrode electrode of infilium in solid phase $[mol/m^3]$ c_p volume fraction of solid particle (active material) in electrode electrode maximum solid 11^n Concentration for positive electrode $[m^2/s]$ and solid simulation coefficient of including the electrode $[m^2/s]$ and solid simulation coefficient of effective diffusion coefficient of effective diffusion coefficient $[m^2/s]$ and $[m^2/s]$ are as a special solution energy that controls temperature sensitivity of $[m^2/s]$ and $[m^2/s]$ are as a special solution energy that controls temperature sensitivity of $[m^2/s]$ and $[m^2/s]$ are as a special solution energy that controls temperature sensitivity of $[m^2/s]$ and $[m^2/s]$ are as a special solution energy that controls temperature sensitivity of $[m^2/s]$ and $[m^2/s]$ are as a special solution energy that controls temperature sensitivity of $[m^2/s]$ and $[m^2/s]$ are as a special solution energy that controls temperature sensitivity of $[m^2/s]$ and $[m^2/s]$ are as a special solution of $[m^2/s]$ ana			$\sigma_{\!\scriptscriptstyle{+}}$	effective electrical conductivity for positive electrode [S/	
	Α	area [m ²]		m]	
	c_p	specific heat capacity [J/kg °C]	σ_	effective electrical conductivity for negative electrode [S/	
Section Sect	$C_{p,p}$	specific heat for positive tab [J/kg-K]		-	
		specific heat for negative tab [J/kg-K]	ϵ_e	volume fraction of electrolyte phase in electrode	
concentration of lithium in solid ja's Concentration for positive electrode [mol/m²] sq. was a maintenance coefficient of anode transfer coefficient of the cathode decrobe [m²/s] to initial anode carbode decrobe [m²/s] to initial anode carbode decrobe [m²/s] to initial anode carbode decrobe electrode [m²/s] to initial anode carbode decrobe electrode [m²/s] to initial anode carbode decrobe electrode [m²/s] to experimental electrode e		specific heat for active zone [J/kg-K]	ϵ_s	= -	
	C_e				
			ϵ_f		
	$C_{s,p,\max}$		\propto_a		
$ [mol/m^3] [$			\propto_c	transfer coefficient of the cathode	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{s,n,\max}$		0.1		
			Subscripts	3	
				11.	
			∞		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
E_{cl} activation energy that controls temperature sensitivity of PLA/moll ϵ cacitation energy that controls temperature sensitivity of filler ϵ cacitation energy that controls temperature sensitivity of filler ϵ cacitation energy that controls temperature sensitivity of filler ϵ cacitation energy that controls temperature sensitivity of filler ϵ cacitation energy that controls temperature sensitivity of filler ϵ cacitation energy that controls temperature sensitivity of filler ϵ cacitation energy that controls temperature sensitivity of filler ϵ cacitation energy that controls temperature sensitivity of filler ϵ cacitation energy that controls temperature sensitivity of filler ϵ control that the clectrode fill of the positive electrode fill positive electr	$D_{s,ref}$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Exp activation energy that controls temperature sensitivity of $k_m \ [kJ/mol]$ activity coefficient of the electrolyte also called electrolyte activity coefficient of the electrolyte also called electrolyte activity coefficient p positive electrode p p separator p	E_d			·	
		~	-		
$ f_{\frac{1}{2}} $	E_{r}		_	•	
electrolyte activity coefficient P positive electrode P Faraday's constant 96485 Columb/mol 7ef reference separator sim simulated tot total total sertion at the electrode/electrolyte interface [A/m²] separator sim simulated tot total xy,z cartesian coordinate directions xy,z ca	C			S	
F Faraday's constant [96485 Columb/mol] ref reference cachange current density [A/m²] s separator sim simulated tot total	f_{\pm}	· · · · · · · · · · · · · · · · · · ·		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	
I current [A] sim simulated total Jii transfer current resulting from lithium insertion/de-insertion at the electrode/electrolyte interface [A/m²] sim simulated total k ionic conductivity of electrolyte [S/m] sertion at the electrode/electrolyte [mol/m²s/s/(mol/m²s)¹-3] superscripts kn reference rate constant for positive electrode [mol/m²s/m²] superscripts km,ref reference rate constant for negative electrode [mol/m²s/m²] superscripts km,ref reference reaction rate coefficient eff effective effective diffusional conductivity [S/m] eff effective diffusional conductivity [S/m] eff effective ionic conductivity [S/m] Acronyms ln length of negative electrode [µm] Acronyms Acronyms ln length of separator [µm] Acronyms Acronyms lp length of the positive electrode [µm] Acronyms Acronyms l to verall length ($I = l_n + l_n + l_p$) in [µm] Acronyms Acronyms q heat generation rate [W] CC Cc constant-current q heat generation rate [W] CC CC constant-current CC Capacity <tr< td=""><td></td><td></td><td>-</td><td></td></tr<>			-		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				-	
sertion at the electrode/electrolyte interface $[A/m^2]$ k ionic conductivity of electrolyte $[S/m]$ reference rate constant for positive electrode $[mol/m^2s/m^2]$ k_n reference rate constant for negative electrode $[mol/m^2s/m^2]$ k_n reference rate constant for negative electrode $[mol/m^2s/m^2]$ k_n reference raction rate coefficient k_0^{eff} effective k_0^{eff} effective k_0^{eff} effective k_0^{eff} effective k_0^{eff} effective k_0^{eff} effective inconductivity $[S/m]$ k_0^{eff} effective electrochemical heat k_0^{eff} effective electrochemical heat k_0^{eff} effective electrochemical heat k_0^{eff} electrochemical heat $k_$					
$ k \\ k \\ p \\ reference rate constant for positive electrode [mol/m^2 s/ (mol/m^3)^{1.5}] \\ k_n \\ reference rate constant for negative electrode [mol/m^2 s/ (mol/m^3)^{1.5}] \\ k_n \\ reference reaction rate coefficient \\ k_0^{eff} \\ effective diffusional conductivity [S/m] \\ k_0^{eff} \\ effective ionic conductivity [S/m] \\ l_n \\ length of resparator [µm] \\ l_p \\ length of separator [µm] \\ l_t \\ v \\ $	J^{2i}				
k_p reference rate constant for positive electrode [mol/m² s/ (mol/m²)1.5] Superscripts k_n reference rate constant for negative electrode [mol/m² s/ (mol/m²)1.5] c degree k_{mxrf} reference reaction rate coefficient eff effective k_0^{eff} effective diffusional conductivity [S/m] ECH electrochemical heat k_0^{eff} effective ionic conductivity [S/m] Acronyms l_n length of negative electrode [µm] Acronyms l_s length of frepative electrode [µm] Acronyms l_s length of the positive electrode [µm] Ansys Inc. American Computer-aided engineering software developer l_s length of the positive electrode [µm] Ansys Inc. American Computer-aided engineering software developer l_s elength of the positive electrode [µm] C capacity l_s elength of the positive electrode [µm] CC constant-current l_s electrodiate along active material particle CFD computational fluid dynamics l_s electrodiate along active material particle [µm] ECM equivalent circuit-based modeling	1-		λ, y, δ	diffesiali coordinate difections	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Superscripts		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	иp	$(\text{mol/m}^3)^{1.5}$]			
$ k_{m,ref} \text{reference reaction rate coefficient} \text{eff} \text{effective} \\ k_{0}^{eff} \text{effective diffusional conductivity } [S/m] \text{effective ionic conductivity } [S/m] \text{effective incic conductivity } [S/m] \text{effective incic incided ensured in expectation } [S/m] \text{effective incide in expectation } [S/m] \text{effective incide } [S/m] effective$	k_n				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
$ \begin{array}{c} k_{o}^{g} \\ k_{o}^{g} \\ \\ l_{n} \\ l_{n$	$k_{m,ref}$	reference reaction rate coefficient			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		effective diffusional conductivity [S/m]	ECH	electrochemical heat	
$ \begin{array}{c} l_{n} & \text{length of separator } [\mu m] \\ l_{p} & \text{length of the positive electrode } [\mu m] \\ L & \text{overall length } (L = l_{n} + l_{s} + l_{p}) \text{ in } [\mu m] \\ n & \text{number of electrons} \\ \hline q & \text{heat generation rate } [W] \\ r & \text{radial coordinate along active material particle} \\ R & \text{resistance } [\Omega] \\ R & \text{universal gas constant } [8.3143 \text{kJ/kg mole. K}] \\ R_{s,p} & \text{radius of solid active material particle } [\mu m] \\ R_{s,p} & \text{particle radius for positive electrode } [\mu m] \\ T & \text{temperature } [^{\circ}\text{C or K}] \\ t^{\circ}\text{transfer number of lithium-ion} \\ t^{\circ}\text{temperature } [^{\circ}\text{C or K}] \\ t^{\circ}\text{temperature } [$	$k_D^{\it eff}$	effective ionic conductivity [S/m]			
$ \begin{array}{c} l_p \\ L \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	l_n	length of negative electrode [μm]	Acronyms		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	l_s		ANICNO I	American Commuter sided on	
n number of electrons C capacity \dot{q} heat generation rate [W] CC constant-current r radial coordinate along active material particle CFD computational fluid dynamics R resistance [Ω] ECT electrochemical thermal R universal gas constant [8.3143 kJ/kg mole. K] ECM equivalent circuit-based modeling R _s , radius of solid active material particle [μm] EV electric vehicle R _{s,p} particle radius for positive electrode [μm] FCV fuel cell vehicle R _{s,n} particle radius for negative electrode [μm] FEA finite element analysis T temperature [°C or K] FEM finite element method t ⁰ /t ⁰ + transfer number of lithium-ion HEV hybrid electric vehicle t time [s] GAIA green and intelligent automotive U electrode potential [V] Li-ion lithium ion LiFePO ₄ LifePO ₄ lithium ion lithium ion LFP lithium phosphate U cell voltage or cell potential [V] LCM lumped parameter model LFP lithium phosphate <td>l_p</td> <td></td> <td>ANSYS II</td> <td>- </td>	l_p		ANSYS II	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L		C		
r radial coordinate along active material particle R resistance $[\Omega]$ ECT electrochemical thermal R universal gas constant $[8.3143 \text{kJ/kg}]$ mole. K] R_s radius of solid active material particle $[\mu m]$ EV electric vehicle $R_{s,p}$ particle radius for positive electrode $[\mu m]$ FCV fuel cell vehicle $R_{s,n}$ particle radius for negative electrode $[\mu m]$ FEA finite element analysis T temperature $[^{\circ}\text{C or K}]$ FEM finite element method t_{τ}^{0} transfer number of lithium-ion t_{τ}^{0} time $[s]$ GAIA green and intelligent automotive t_{τ}^{0} time $[s]$ GAIA green and intelligent automotive t_{τ}^{0} electrode potential $[V]$ LCM lumped capacitance model t_{τ}^{0} the lumped parameter model t_{τ}^{0} the thermal diffusivity $[m^{2}/s]$ LabVIEW laboratory virtual instrument engineering workbench t_{τ}^{0} energy dissipation rate t_{τ}^{0} Burggeman porosity exponent t_{τ}^{0} ROM CONCOCCO multivative transfer t_{τ}^{0} and $t_{$	n				
R resistance $[\Omega]$ ECT electrochemical thermal R universal gas constant $[8.3143 \text{kJ/kg mole. K}]$ ECM equivalent circuit-based modeling R _s radius of solid active material particle $[\mu m]$ EV electric vehicle R _{s,p} particle radius for positive electrode $[\mu m]$ FCV fuel cell vehicle R _{s,n} particle radius for negative electrode $[\mu m]$ FEA finite element analysis T temperature $[^{\circ}\text{C or K}]$ FEM finite element method t_{+}^{0} transfer number of lithium-ion HEV hybrid electric vehicle t time $[s]$ GAIA green and intelligent automotive U electrode potential of the reaction or thermodynamic open circuit potential $[V]$ LiFePO ₄ lithium ion LiFePO ₄ lithium iron phosphate U cell voltage or cell potential $[V]$ LiFePO ₄ lithium phosphate Greek symbols LPM lumped parameter model LPV linear parameter varying α thermal diffusivity $[m^{2}/s]$ LabVIEW laboratory virtual instrument engineering workbench multi scale multi domain β Burggeman porosity exponent NiMH nickel metal hydride					
R universal gas constant [8.3143 kJ/kg mole. K] ECM equivalent circuit-based modeling R_s radius of solid active material particle [μ m] EV electric vehicle $R_{s,p}$ particle radius for positive electrode [μ m] FCV fuel cell vehicle $R_{s,n}$ particle radius for negative electrode [μ m] FEA finite element analysis T temperature [°C or K] FEM finite element method t_s^0 transfer number of lithium-ion HEV hybrid electric vehicle t time [s] GAIA green and intelligent automotive t time [t] HEV electrode potential of the reaction or thermodynamic open circuit potential [V] LiFePO ₄ lithium iron phosphate t LiFePO ₄ lithium phosphate t LiFePO lithium phosphate t LiPM lumped parameter model t LiPV linear parameter varying t at thermal diffusivity [t				÷	
Rs radius of solid active material particle [μ m] EV electric vehicle Rs,p particle radius for positive electrode [μ m] FCV fuel cell vehicle Rs,n particle radius for negative electrode [μ m] FEA finite element analysis T temperature [°C or K] FEM finite element method t_0^+ transfer number of lithium-ion HEV hybrid electric vehicle t time [s] GAIA green and intelligent automotive U electrode potential of the reaction or thermodynamic open circuit potential [V] Li-ion lithium ion circuit potential [V] LCM lumped capacitance model LFP lithium phosphate Greek symbols LPM lumped parameter model LPV linear parameter varying α thermal diffusivity [m^2/s] LabVIEW laboratory virtual instrument engineering workbench φ energy dissipation rate β Burggeman porosity exponent ϕ Surggeman porosity exponent ϕ energy dissipation rate ϕ Roll Agriculture and selectric vehicle EV fuel cell vehicle FCV fuel cell vehicle FCV fuel cell vehicle FCV fuel cell vehicle FEA finite element analysis FEA finite element analysis FEA finite element FEA finite FEA finite element FEA finite element FEA finite FEA fin					
$R_{s,p}$ particle radius for positive electrode [µm] FCV fuel cell vehicle $R_{s,n}$ particle radius for negative electrode [µm] FEA finite element analysis T temperature [°C or K] FEM finite element method t transfer number of lithium-ion HEV hybrid electric vehicle t time [s] GAIA green and intelligent automotive t electrode potential of the reaction or thermodynamic open circuit potential [V] LiFePO ₄ lithium iron phosphate t Cell voltage or cell potential [V] LCM lumped capacitance model t LFP lithium phosphate t Greek symbols LPM lumped parameter model t LPV linear parameter varying t a thermal diffusivity [m²/s] LabVIEW laboratory virtual instrument engineering workbench multi scale multi domain t Burggeman porosity exponent NiMH nickel metal hydride				•	
$R_{s,n}$ particle radius for positive electrode [µm] $R_{s,n}$ particle radius for negative electrode [µm] $R_{s,n}$ finite element analysis $R_{s,n}$ finite element method $R_{s,n}$ finite element analysis $R_{s,n}$ finite element analysis $R_{s,n}$ finite element method $R_{s,n}$ finit					
T temperature [°C or K] FEM finite element method t_{+}^{0} transfer number of lithium-ion t time [s] GAIA green and intelligent automotive t time [s] Li-ion lithium ion circuit potential [V] LCM lumped capacitance model t Cell voltage or cell potential [V] LCM lumped capacitance model t LPM lumped parameter model t LPW linear parameter varying t thermal diffusivity t		-, -			
t^0_t transfer number of lithium-ion t^0_t delectrode potential of the reaction or thermodynamic open t^0_t circuit potential [V] t^0_t lithium ion t^0_t lithium iron phosphate t^0_t lithium phosphate t^0_t linear parameter warying t^0_t linear parameter varying t^0_t linear parameter varying t^0_t linear parameter varying t^0_t laboratory virtual instrument engineering workbench t^0_t energy dissipation rate t^0_t linear parameter varying laboratory virtual instrument engineering workbench t^0_t energy dissipation rate t^0_t linear parameter varying laboratory virtual instrument engineering workbench t^0_t linear parameter varying laboratory virtual instrument engineering workbench t^0_t linear parameter varying laboratory virtual instrument engineering workbench t^0_t linear parameter varying laboratory virtual instrument engineering workbench t^0_t lithium iron phosphate laboratory laboratory virtual instrument engineering workbench t^0_t lithium iron phosphate laboratory laboratory virtual instrument engineering workbench laboratory virtual instrument engineerin				-	
t time [s] U electrode potential of the reaction or thermodynamic open circuit potential [V] V cell voltage or cell potential [V] Greek symbols Greek symbols α thermal diffusivity $[m^2/s]$ α energy dissipation rate β Burggeman porosity exponent GAIA green and intelligent automotive Li-ion lithium ion LiFePO ₄ lithium iron phosphate LCM lumped capacitance model LFP lithium phosphate LPW linear parameter model LPV linear parameter varying LabVIEW laboratory virtual instrument engineering workbench multi scale multi domain NiMH nickel metal hydride		* -			
U electrode potential of the reaction or thermodynamic open circuit potential [V] Li-ion LiFePO ₄ lithium iron phosphate V cell voltage or cell potential [V] LCM lumped capacitance model lithium phosphate U					
circuit potential [V] V cell voltage or cell potential [V] LiFePO ₄ LiHePO ₄ Lithium iron phosphate LCM lumped capacitance model LFP lithium phosphate LPM lumped parameter model LPV linear parameter varying α thermal diffusivity [m²/s] φ energy dissipation rate φ energy dissipation rate φ Burggeman porosity exponent φ Burggeman porosity exponent NiMH nickel metal hydride					
V cell voltage or cell potential [V] LCM lumped capacitance model LFP lithium phosphate LPM lumped parameter model LPV linear parameter varying LabVIEW laboratory virtual instrument engineering workbench φ energy dissipation rate MSMD multi scale multi domain β Burggeman porosity exponent NiMH nickel metal hydride	-				
	V				
Greek symbols LPM lumped parameter model LPV linear parameter varying α thermal diffusivity $[m^2/s]$ LabVIEW laboratory virtual instrument engineering workbench φ energy dissipation rate MSMD multi scale multi domain β Burggeman porosity exponent NiMH nickel metal hydride	-	O L	LFP		
LPV linear parameter varying α thermal diffusivity [m²/s] LabVIEW laboratory virtual instrument engineering workbench φ energy dissipation rate MSMD multi scale multi domain β Burggeman porosity exponent NiMH nickel metal hydride	Greek symbols		LPM		
φ energy dissipation rate MSMD multi scale multi domain β Burggeman porosity exponent NiMH nickel metal hydride	,		LPV		
φ energy dissipation rate MSMD multi scale multi domain β Burggeman porosity exponent NiMH nickel metal hydride	α	thermal diffusivity [m ² /s]	LabVIEW	laboratory virtual instrument engineering workbench	
OCY/OCD and a desired to the control of the control	φ				
ho density [kg/m ³] OCV/OCP open circuit voltage/open circuit potential	β			-	
	ρ	density [kg/m ³]	OCV/OC	Popen circuit voltage/open circuit potential	

Download English Version:

https://daneshyari.com/en/article/7045685

Download Persian Version:

https://daneshyari.com/article/7045685

<u>Daneshyari.com</u>