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a  b  s  t  r  a  c  t

In  this  paper  univariate  models  for  short-term  load  forecasting  based  on  linear  regression  and  patterns
of  daily  cycles  of load  time  series  are  proposed.  The  patterns  used  as  input  and  output  variables  simplify
the  forecasting  problem  by filtering  out  the  trend  and  seasonal  variations  of periods  longer  than  the daily
one.  The  nonstationarity  in  mean  and  variance  is also  eliminated.  The  simplified  relationship  between
variables  (patterns)  is  modeled  locally  in  the  neighborhood  of  the current  input  using  linear  regression.
The  load  forecast  is  constructed  from  the  forecasted  output  pattern  and  the  current  values  of  variables
describing  the  load  time  series.  The  proposed  stepwise  and  lasso  regressions  reduce  the  number  of pre-
dictors  to a few. In  the  principal  components  regression  and  partial  least-squares  regression  only  one
predictor  is used.  This  allows  us to  visualize  the  data  and  regression  function.  The  performances  of the
proposed  methods  were  compared  with  that  of  other  models  based  on  ARIMA,  exponential  smoothing,
neural  networks  and  Nadaraya–Watson  estimator.  Application  examples  confirm  valuable  properties  of
the proposed  approaches  and  their  high  accuracy.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Short-term load forecasting (STLF) is necessary for economic
generation of power and system security. It refers to forecasts of
system load from hours to several days ahead. The accurate load
forecasts lead to lower operating cost which contributes to sav-
ings in electric utilities. The STLF accuracy is also important for the
deregulated electricity markets. The amount of energy which the
utility has to buy or sell in the real time market at unfavorable
prices depends on the forecast error. Thus STLF is a very important
problem for electric utilities, regional transmission organizations,
energy suppliers and financial institutions. This is reflected in the
literature by many forecasting methods that have been applied,
including conventional methods and new computational intelli-
gence and machine learning methods. A large research activity in
the field of STLF is related with the problem complexity: the load
time series is nonstationary in mean and variance, expresses trend,
multiple seasonal variations (daily, weekly and annual) and ran-
dom noise. In addition, load is affected by many external factors
such as weather, time, demography, economy, electricity prices,
geographical conditions, consumer types and their habits.
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Among the conventional STLF methods the most commonly
employed are: the Holt–Winters exponential smoothing (ES) and
the autoregressive integrated moving average (ARIMA) models
[1]. In ES the time series is decomposed into a trend component
(expressed by level and growth terms) and seasonal components
which can be combined additively or multiplicatively. ES allows
us to model nonlinear and heteroscedastic time series but the
exogenous variables cannot be introduced into the model. Other
important disadvantages of ES are overparameterization and a large
number of starting values to estimate. In [2] to reduce the dimen-
sion of the model new ES formulation called parsimonious seasonal
ES was proposed. But there are still dozens or hundreds of terms to
initialize and update in the model. The recently developed expo-
nentially weighted methods in application to STLF are presented in
[3].

ARIMA processes are a very rich class of possible models and
allows us to model multiple seasonal cycles. The stochastic nature
of load is often modeled with seasonal ARIMA models in practice.
A disadvantage of ARIMA models is their linear nature. The order
selection process of ARIMA is usually considered subjective and
difficult to apply, which is a main obstacle in using these mod-
els. To simplify the forecasting problem the time series is often
decomposed. The components: trend, seasonal components and
irregular component, showing less complexity than the original
series, are modeled independently (e.g. [4]). Another time series
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decomposition method using lifting scheme (the second generation
wavelet transform) was described in [5].

The most popular computational intelligence methods applied
in STLF are neural networks. They have many attractive features
such as: universal approximation property, learning capabilities,
massive parallelism, robustness in the presence of noise, and fault
tolerance. The drawbacks of neural network include: disruptive and
unstable training, difficulty in matching the network structure to
the problem complexity, weak capacity of extrapolation and many
parameters to estimate (hundreds of weights). Some examples of
using neural networks in STLF are: [6], where the complexity of
the network is controlled by the Bayesian approach, [7], where a
new hybrid forecasting method composed of wavelet transform,
multilayer perceptron and evolutionary algorithm is proposed,
[8], where a generic framework combining similar day selection,
wavelet decomposition, and multilayer perceptron is presented,
and [9], where the neural network generates the prediction inter-
vals.

Another branch of computational intelligence, fuzzy logic,
allows us to enter information by facts and rules formulated ver-
bally by experts and describing the behavior of complex systems by
using linguistic expressions. With the help of fuzzy rules the impre-
cise, incomplete and ambiguous information can be introduced into
the STLF models. When it is difficult to gain knowledge directly
from the experts, to generate a set of if-then rules the neuro-fuzzy
approach is applied, which learns from examples. But the neuro-
fuzzy system structure is complex and the number of parameters
is usually large (it depends on the problem dimensionality and
complexity), so the learning is difficult and does not guarantee con-
vergence to the global minimum. Examples of STLF models based on
fuzzy logic are: [10], where the neuro-fuzzy system is used to adjust
the results of load forecasting obtained by radial basis function neu-
ral network, [11], where two neuro-fuzzy networks are proposed: a
wavelet fuzzy neural network using the fuzzified wavelet features
as the inputs, and fuzzy neural network employing the Choquet
integral as the outputs, [12], where an integrated approach which
combines a self-organizing fuzzy neural network learning method
with a bilevel optimization method is described, and [13], where
the forecasting model combines fuzzy logic, wavelet transform and
neural network. Another useful computational intelligence tools
for STLF are: support vector machines (SVM) [14,15], ensembles of
models [16,17] and artificial immune systems [18] (description of
more STLF models you can find on the website http://gdudek.el.pcz.
pl/publications).

It is noteworthy that many of the STLF models developed in
recent years are hybrid solutions. They combine data preprocess-
ing methods (e.g. wavelet transform) with approximation methods
(such as neural and neuro-fuzzy networks or SVM) and optimiza-
tion or learning methods (e.g. evolutionary and swarm algorithms).

The disadvantages of the above mentioned complex forecast-
ing models with many parameters are: hard and time-consuming
training, problems with generalization, unclear structure and unin-
terpretable parameters. Most often time series with multiple
seasonal cycles and trend, expressing nonstationarity in mean and
variance cannot be modeled directly and additional treatments
such as detrending, deseasonality or decomposition are needed.

In contrast to the complex models commonly used in STLF in
this work simple methods of linear regression are proposed. The
number of parameters here is small and they can be estimated using
simple least squares approach. The key element of the proposed
methods is data preprocessing: defining patterns of seasonal cycles.
This simplifies the STLF problem eliminating nonstationarity, and
filtering trend and seasonal cycles longer than the daily one.

The paper is organized in a theoretical and an empirical part.
In the beginning the patterns of daily cycles of load time series
are defined. Then the main concepts of the linear regression

models for STLF are introduced. In the last section the real load
data are used to provide examples of model building and forecast-
ing in practice. The results of the proposed methods are compared
to results of other STLF methods: ARIMA, ES, multilayer perceptron
and Nadaraya–Watson estimator.

2. Patterns of the times series seasonal cycles

Data preprocessing based on patterns simplifies the forecasting
time series with multiple seasonal cycles. In our case the patterns
of the daily cycles are introduced: the input patterns x and output
ones y. The input pattern is a vector x = [x1 x2 . . . xn]T ∈ X = R

n, rep-
resenting the vector of loads in successive timepoints of the daily
period: L = [L1 L2 . . . Ln]T, where n = 24 for hourly load time series,
n = 48 for half-hourly load time series and n = 96 for quarter-hourly
load time series. The functions mapping the time series elements
L into patterns are dependent on the time series (trend, seasonal
variations), the forecast period and horizon. They should maximize
the model quality. In this study the input pattern xi, representing
the ith daily period, is defined as follows:

xi,t = Li,t − L̄i√∑n
l=1

(
Li,l − L̄i

)2
, (1)

where i = 1, 2, . . .,  N is the daily period number, N is the number
of days in the time series, t = 1, 2, . . .,  n is the time series element
number in the period i, Li,t is the tth time series element (load) in
the period i, L̄i is the mean load value in the period i.

According to definition (1), first we subtract the vector Li mean
from its components and then we  divide the resulting vector by its
length. As a result we  get the normalized vectors xi with length
1, zero mean and the same variance. Note that the time series
which is nonstationary in mean and variance is represented now by
x-patterns having the same mean and variance. The trend and addi-
tional seasonal variations (weekly and annual ones in our case) are
filtered. The x-patterns contain information only about the shapes
of daily curves.

Whilst the x-patterns represent input variables (predictors), i.e.
the loads for the day i, the y-patterns represent the output vari-
ables, i.e. the forecasted loads for the day i + �, where � is a forecast
horizon in days. The components of the n-dimensional output pat-
tern yi = [yi,1 yi,2 . . . yi,n]T ∈ Y = R

n, representing the load vector Li+�

are defined as follows:

yi,t = Li+�,t − L̄i√∑n
l=1

(
Li,l − L̄i

)2
, (2)

where i = 1, 2, . . .,  N, t = 1, 2, . . .,  n.
This is the similar equation to (1) but in this case we do not

use the mean load of the day i + �
(

L̄i+�

)
in the numerator and√∑n

l=1

(
Li+�,l − L̄i+�

)2
in the denominator, because these values

are not known in the moment of forecasting. We  use known values

of L̄i and
√∑n

l=1

(
Li,l − L̄i

)2
instead. This is very important because

when the forecast of pattern yi is generated by the model we  can
determine the forecast of vector Li+� using transformed Eq. (2):

�
Li+�,t = �yi,t

√∑n

l=1

(
Li,l − L̄i

)2 + L̄i, (3)

where �yi,t is the forecasted tth component of the pattern yi.
Note that L̄i and the value of square root in (3) are known at the

time of forecasting and can be used for decoding of �yi,t to get
�
Li+�,t .

Note also that
√∑n

l=1

(
Li,l − L̄i

)2
is the carrier of the dispersion of

the current daily cycle. Using this square root in the denominator of
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