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a  b  s  t  r  a  c  t

This paper  presents  a quadratic  approximation  for the  optimal  power  flow  in  power  distributions  systems.
The proposed  approach  is  based  on  a linearized  load  flow  which  is  valid  for  power  distribution  systems
including  three-phase  unbalanced  operation.  The  main  feature  of  the methodology  is its simplicity.  The
accuracy  of  the  proposed  approximation  is compared  to the non-linear/non-convex  formulation  of  the
optimal  power  flow  using  different  optimization  solvers.  The  studies  indicate  the  proposed  approxi-
mation  provides  a very  accurate  solution  for systems  with  a  good  voltage  profile.  Results  over  a set  of
1000  randomly  generated  test  power  distribution  systems  demonstrate  this  solution  can  be  considered
for  practical  purposes  in  most  of  the cases.  An  analytical  solution  for the  unconstrained  problem  is  also
developed.  This  solution  can  be  used  as  an  initialization  point  for a more  precise  formulation  of  the
problem.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Optimal power flow (OPF) is a classic problem for transmission
system operation which has been extensively studied in the sci-
entific literature [1–3]. The increasing penetration of renewable
energies and the possibilities offered by communications in future
smart-grids allow the use of OPF in power distribution systems [4,5]
and especially in micro-grids [6–8].

OPF is a challenging problem due to the high number of non-
convex constraints. Newton–Raphson, descendent gradient and
interior points methods [9,10] are traditionally employed to obtain
an optimal solution which may  be the global optimum, although the
problem may  have several solutions that are locally optimal. These
methods allow a decoupled formulations in the context of trans-
mission networks, since nodal voltages are usually close to 1 ∠ 0
and reactance/resistance ratio of transmission lines is frequently
high. A good quality initial solution as well as a simple modeling
which allows fast calculation of derivatives, are key features for a
fast and accurate solution of the problem [11].

The problem is more challenging in power distribution systems
due to the unbalanced operation and low X/R ratio of distribution
lines. Hence, specially made algorithms are required. Non-linear
programming as well as heuristic algorithms based on artificial
intelligence have been proposed to find good solutions [12–14].
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Evolutionary algorithms [15–17] and particle swarm optimization
[18] have demonstrated to be efficient approaches for the problem.
This type of algorithms allow an accurate modeling of the system
by including constrains otherwise very difficult to consider. How-
ever, heuristic algorithms do not guarantee optimality and can be
computationally cumbersome for real time operation.

Another approach for the problem in both, transmission and dis-
tribution networks, is the use of relaxations and simplifications in
order to “convexify” the problem [19–23]. Semidefinite program-
ming is one of the most promising modeling techniques for this
propose [24,25]. The main advantage to reformulate a problem as a
convex optimization problem is the capability to find global optimal
solutions in an efficient way [26]. In addition, a convex formulation
allows in some cases, the use of distributed methods. This is a key
feature for future smart-grids.

The difficulty of the OPF lies in the non-convex nature of the
load flow equations rather than in the number of variables. Differ-
ent convex approximation have been proposed in the literature to
address this problem. For example, in [27] a curve-fitting technique
was used in order to linearize voltage-dependent load models.
Other analytical approaches were presented in [28,29].

This paper introduces a quadratic convex approximation for the
OPF in power distribution systems. This approximation is based on
the linear formulation of the power flow presented in [29]. Different
consideration are made ending at a non-iterative analytical solution
for the relaxed problem. Both, the quadratic convex model and the
analytical relaxed model are extensible to three-phase unbalanced
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distribution systems. These results have many potential applica-
tions including:

• As initial point for other non-linear or heuristic algorithms.
• As a practical solution in systems in which a close-to-the-optimal

solution is acceptable.
• In markets regulation where a convex formulation is desired (i.e.

the solution is unique and do not depend on the used algorithm).
• In real time operation where a fast solution is required.
• As part of another algorithm that requires to call many times an

OPF as a sub-routine.
• As sensitivity analysis for power distribution systems.

Unlike conventional formulations, the proposed approximation
uses complex voltages as state variables represented in rectangu-
lar form. Although similar formulations have been proposed before
[30–33] the results presented here are different in three main
aspects: first, the proposed formulation seeks an approximated
model rather than an efficient implementation of a conventional
Newton-based algorithm. This approximation has theoretical and
practical applications from the power engineering stand point.
Second, modeling and linearization is made entirely on complex
variable before split in real and imaginary part for the optimiza-
tion process. Off course, it might be possible first split and then
linearize, but modeling in complex variables allows a straightfor-
ward extension to the three-phase case and inclusion of complex
constrains. Third, an non-iterative solution is found for the relaxed
case. Due to the non-convex characteristic of the problem, even
the unconstrained case is difficult and can lead to local optimums
[25]. Therefore, a global non-iterative solution is useful even for
initialization purposes [34]. The model is applicable to transmis-
sion networks but is more suitable for power distribution systems
where PV nodes are less common.

The remainder of this paper is organized as follows. Section 2
reviews the non-linear non-convex formulation of the OPF and
analyzes the advantages of a rectangular formulation in power
distribution systems. Section 3 presents the quadratic convex
approximation of the OPF as well as a non-iterative analytical
solution for the relaxed problem. In Section 4, the methodology
is extended to three-phase unbalanced systems. Finally, Section 5
presents simulation results performed over an extensive set of test
systems before Section 6 concludes.

2. Formulation of the OPF for power distribution systems

Different formulations for the OPF have been proposed in
the scientific literature as a result of contributions from many
researchers in this area. Two main formulations can be considered
namely Polar-OPF and Rect-OPF, according to the representation
of the state variables (polar or rectangular). Both formulations
are equivalent. In the first case, decision variables are active
and reactive power of distributed generators while voltages are
state variables represented in polar form. In the second case,
decision variables are currents injected by generators and state
variables are voltages (both represented in rectangular form). Dif-
ferent objective functions can be considered including minimal
generation costs, maximum market surplus and minimum losses,
among others. In this paper, the minimum losses OPF is consid-
ered although the methodology can be extended for other objective
functions.

Rect-OPF is less common in the literature than Polar-OPF [2].
However, it has some advantages in power distribution systems,
especially in those cases where distributed generators are operated
at constant power factor. In this formulation, voltages and currents

are represented in rectangular form ((vr , vi)(ir , ii)) as given in Eqs.
(1)–(9)

Minimize PL =
(

2
N∑

k=1

g(k0) · vr(k) · v(0)

)
+
(

N∑
k=1

N∑
m=1

g(km) · vr(k) · vr(m)

)

+
(

N∑
k=1

N∑
m=1

g(km) · vi(k) · vi(m)

)
(1)

subject to

ir(k) =
N∑

m=1

g(km) · vr(m) − b(km) · vi(m) (2)

ii(k) =
N∑

m=1

g(km) · vi(m) + b(km) · vr(m) (3)

v2
(k) · ir(k) = (p(k) · v˛(k)

(k) + Pg(k)) · vr(k) + (q(k) · v˛(k)
(k) + Qg(k)) · vi(k) (4)

v2
(k) · ii(k) = (p(k) · v˛(k)

(k) + Pg(k)) · vi(k) − (q(k) · v˛k
(k) + Qg(k)) · vr(k) (5)

v2
(k) = v2

r(k) + v2
i(k) (6)

vmin ≤ v(k) ≤ vmax (7)

Pmin ≤ Pg(k) ≤ Pmax (8)

Qmin ≤ Qg(k) ≤ Qmax (9)

where subscripts r, i represent real and imaginary part, and sub-
scripts (k), (m) represent nodes (with (0) the slack node). Moreover,
g(km), b(km) represent real and imaginary components of the nodal
admittance matrix respectively, p and q are the nodal active and
reactive power, Pg, Qg are the active and reactive power delivered
by distributed generators, and finally  ̨ is an exponent that repre-
sent the ZIP model of each load (i.e. 0 for constant power loads, 1
for constant current and 2 for constant impedance).

The main advantage of the Rect-OPF is that coupling between
nodes are represented by a linear equation while the non-
linear/non-convex equations are isolated to each bus. The main
source of non-linear equations are constant power loads. Dis-
tributed generators can be considered as PQ buses for mathematical
optimization modeling even if operated at constant voltage. Set
point of the voltage can be calculated after the optimization is per-
formed. On the other hand, most of the loads in distribution systems
require a model which considers constant power, constant current
and constant impedance loads (i.e. the ZIP model). Therefore, a
linearization of the constant power loads is required in order to
obtain a convex approximation.

3. Quadratic approximation

This section presents the quadratic approximation (Quad-OPF)
from the Rect-OPF. The key step in this development is the lineari-
zation of the load flow equations which was first presented in [29].
For the sake of completeness, it is briefly presented below.

Let us consider a power distribution system whose topology is
described by the nodal admittance matrix as follows:(
I0

IN

)
=
(
Y00 Y0N

YN0 YNN

)
·
(
V0

VN

)
(10)

where 0 is the substation node (slack) and N = {1, 2, . . .,  n} are the
remained nodes. Along this section, a blackboard bold variable rep-
resents a complex matrix or vector while an unbold variable with
sub index r or i represents its real or imaginary part respectively.
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