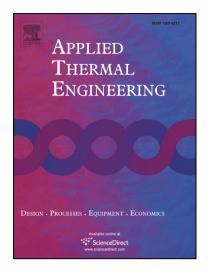
Accepted Manuscript

Natural Convection in a Cross-Fin Heat Sink

Shangsheng Feng, Meng Shi, Hongbin Yan, Shanyouming Sun, Feichen Li, Tian Jian Lu


PII: S1359-4311(17)34429-0

DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.049

Reference: ATE 11570

To appear in: Applied Thermal Engineering

Received Date: 4 July 2017 Revised Date: 9 October 2017 Accepted Date: 10 December 2017

Please cite this article as: S. Feng, M. Shi, H. Yan, S. Sun, F. Li, T. Jian Lu, Natural Convection in a Cross-Fin Heat Sink, *Applied Thermal Engineering* (2017), doi: https://doi.org/10.1016/j.applthermaleng.2017.12.049

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Natural Convection in a Cross-Fin Heat Sink

Shangsheng Feng¹, Meng Shi², Hongbin Yan³, Shanyouming Sun¹, Feichen Li¹, Tian Jian Lu^{1*}

¹ State Key Laboratory for Strength and Vibration of Mechanical Structure, MOE Key Laboratory for Multifunctional Materials and Structures (LMMS), Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P.R. China

² School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China

³ School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072,

P.R. China

*Corresponding author: tjlu@mail.xjtu.edu.cn

Abstract

A novel cross-fin heat sink consisting of a series of long fins and a series of perpendicularly arranged short fins was proposed to enhance natural convective heat transfer. The design principle of the cross-fin heat sink was based on overcoming internal thermal fluid-flow defects in a conventional plate-fin heat sink. The thermal performance of the proposed heat sink was compared with a reference plate-fin heat sink in horizontal orientation. A numerical model considering both natural convection and radiation heat transfer was developed to obtain thermal fluid-flow distributions and heat transfer coefficients of both the cross- and plate-fin heat sinks. Corresponding experiments were performed to validate the model predictions. It was demonstrated that, compared to the reference plate-fin heat sink, the cross-fin heat sink enhanced the overall (including natural convection and radiation) and convective (excluding radiation) heat transfer coefficients by 11% and 15%, respectively. Importantly, the enhancement was achieved without increasing the overall volume, material consumption, and too much extra cost. The proposed cross-fin heat sink provides a practical alternative to the widely adopted plate-fin heat sinks.

Keywords: plate-fin heat sink, cross-fin heat sink, natural convection, heat transfer enhancement

Nomenclature

 A_{sub} base area of substrate (m²)

 h_{ovl} overall heat transfer coefficient (W/m²K) h_{con} convective heat transfer coefficient (W/m²K)

 Q_{rad} radiative heat transfer rate (W)

Download English Version:

https://daneshyari.com/en/article/7046000

Download Persian Version:

https://daneshyari.com/article/7046000

<u>Daneshyari.com</u>