Applied Thermal Engineering 132 (2018) 140-153

Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

Research Paper

A three-dimensional multi-phase numerical model of DMFC utilizing Eulerian-Eulerian model

Jing Sun^{a,b}, Guobin Zhang^c, Ting Guo^d, Kui Jiao^{c,*}, Xuri Huang^{a,*}

^a Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational Chemistry, Jilin University, 2 Liutiao Rd, Changchun 130023, China ^b Jilin Provincial Key Laboratory for Numerical Simulation, School of Computer Science, Jilin Normal University, 1301 Haifeng Street, Siping 136000, China ^c State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin 300350, China

^d China Automotive Technology and Research Center, No. 68, East Xianfeng Road, Dongli District, Tianjin 300300, China

HIGHLIGHTS

• A 3D multiphase model of DMFC is developed based on the Eulerian-Eulerian model.

- The carbon dioxide in anode channel mainly accumulates at the AFC/ADL interface.
- The carbon dioxide produced in ACL is likely to accumulate under the inlet region.
- The higher the DMFC operating temperature, the more methanol crossover.

• The higher the temperature, the less carbon dioxide in DMFC due to the dissolution.

ARTICLE INFO

Article history: Received 6 October 2017 Revised 7 November 2017 Accepted 9 December 2017 Available online 14 December 2017

Keywords: DMFC Eulerian-Eulerian model Gas and liquid two-phase flow Temperature effect

ABSTRACT

A three-dimensional multiphase model of DMFC (direct methanol fuel cell) is developed, in which the Eulerian-Eulerian model is adopted to treat the gas and liquid two-phase flow in channel. Meanwhile, the multiphase flow in porous electrodes is solved with the help of gas and liquid pressure conservation equations to reflect the liquid saturation jump phenomenon at two different porous electrodes (e.g. DL (diffusion layer) and CL (catalyst layer)). The effects of current density, methanol concentration and temperature on gas and liquid two-phase flow in channel and porous electrodes are investigated in detail. It is found that the carbon dioxide in anode channel gradually increases along flow direction and is mainly accumulated at the interface of anode channel and DL. Meanwhile, the carbon dioxide produced in ACL (anode catalyst layer) is likely to accumulate under the inlet region and then increases along flow direction gradually. Moreover, the higher the temperature, the more methanol crossover and the less carbon dioxide produced in DMFC because of the dissolution.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decade, as a clean energy power source, DMFC (direct methanol fuel cell) has drawn considerable attention because of its lower to zero emission, higher energy density and efficiency compared to other power sources (e.g. lithium-ion battery). In general, there are two basic types of DMFC: passive and active. Passive DMFC features simpler system compared to active DMFC and therefore has been widely studied in many aspects, such as water and heat management [1–11], methanol and water crossover [4,12–15] and alkaline membrane [16].

In contrast, active DMFC exhibits higher performance and is easier to control the operation condition compared to passive

* Corresponding authors. *E-mail addresses: kjiao@tju.edu.cn* (K. Jiao), huangxr@jlu.edu.cn (X. Huang). DMFC, because of the utilization of liquid pumps in anode, gas compressors in cathode and other devices [17,18]. So far, the effects of operation condition (temperature, methanol concentration, anode and cathode flow rate and humidification, etc.) [8,19–23] and geometry [8,24,25] on the performance of active DMFC have been investigated in detail. Kianimanesh et al. [24] analyzed different serpentine channel widths and found that the cell performance with the narrowest channel width was the best. Almheiri and Liu [26,27] measured the methanol crossover flux and current density under the land and channel separately in an active DMFC and found that the methanol crossover flux under the land is higher than that under the channel due to the convection under the land. Casalegno et al. [28] noticed that the methanol crossover is mainly caused by the diffusion through the membrane, which is greatly affected by temperature.

Nomenclature

	а	water activity	$\sigma_{ m s}$
	Α	specific interfacial area (m^{-1})	ϕ
	С	molar concentration (mol m^{-3}); gas constant	
	D	mass diffusivity (m ² s ⁻¹)	Sul
	Ε	potential (V); effective activation energy (J mol ⁻¹)	а
	E _{cell}	cell voltage (V)	AC
	Er	thermodynamic equilibrium voltage (V)	AD
	EW	equivalent weight of the membrane $(kg mol^{-1})$	AD
	F	Faraday's constant (96485.0 C mol ^{-1})	AFC
	g	gravity (kg/N)	AFC
	H	Henry's constant, height (m)	ave
	h	interfacial transfer rate constant (m s^{-1}), latent heat	hn
		$(J \text{ kg}^{-1})$	C C
	Ι	current density (A m^{-2})	cci
	i	reaction rate $(A m^{-3})$	CD
	Ĵ	Leverette function	CD
	ĸ	permeability of porous material (m ²)	CFC
	k	thermal conductivity (W m ^{-1} K ^{-1})	CFC
	k _r	relative permeability	ch
	Ĺ	length (m)	CI
	т	the mass flow rate (kg/s)	
	'n	mass transfer	cor
	М	molecular weight (kg mol ^{-1})	וח
	Ν	flux (mol $m^{-2} s^{-1}$)	dry
	na	electro-osmotic drag coefficient	off
	P	pressure (Pa)	ele
	0	flow rate (ml min ^{-1} , sccm)	Pan
	R	universal gas constant (8.314 $I K^{-1} mol^{-1}$).	Eye
	\overrightarrow{R}_{na}	interaction force between phases	σ
	S S	volume fraction: entropy $(I \text{ mol}^{-1} \text{ K}^{-1})$	в 42
	S	standard entropy \tilde{R} ($I kg^{-1}$), source term (kg m ⁻³ s ⁻¹).	i 112
		$mol m^{-3} s^{-1}$)	i in
	Т	temperature (K)	Int
	V	partial molar volume $(m^3 mol^{-1})$, volume fraction	ion
	W	width (m)	1
	x	position or coordinate (m)	ם ו
	v	position or coordinate (m)	m
	Ŷ	species	M
	z	position or coordinate (m)	ME
	~	F ()	MC
	Creek letters		mu
		volume fraction kinetic transfer coefficient	N
	$\frac{\alpha}{v}$	velocity	02
	τ	strass_strain tensor	02 0R
	1) 1)	reaction order	
	8	thickness (m)	rof
	0 c	porosity	n
	u u	voltage loss (V)	P pa
	יו A	contact angle (\circ)	РЧ
	2	water content in ionomer	y sat
	л 11	dynamic viscosity (kg m ⁻¹ s ⁻¹)	Sul T
	μ	density (kg m ⁻³)	і VЛ
	р к	ionic conductivity of membrane(Ω^{-1} m ⁻¹)	VL IAT
	π	surface tension coefficient (N m^{-1})	VVV
	0		
_			

σ_s	electric conductivity ($\Omega^{-1} m^{-1}$)			
ϕ	potential (V)			
Subscripts and superscripts				
а	anode			
ACL	anode catalyst layer			
ADL	anode diffusion layer			
ADL-Int	the mesh closest the ADL/AFC interface in ADL			
AFC	anode flow channel			
AFC-Int	the mesh closest the AFC/ADL interface in AFC			
aver	average			
bp	bipolar plate			
C	cathode, capillary			
CCL	cathode catalyst layer			
CDL	cathode diffusion layer			
CDL-Int	the mesh closest the CDL/CFD interface in CDL			
CFC Int	catnode flow channel			
CFC-INT	the mesh closest the CFC/CDL interface in CFC			
	Clidilie			
CL CO2	catalyst layer (anoue and cathode)			
cond	condensation			
נטווט חו	diffusion layer (anode and cathode)			
drv	dry membrane			
eff	effective			
ele	electrolyte			
eauil	equilibrium			
Evap	evaporation			
g	gas			
H2O	water			
i	species			
in	channel inlet			
Int	interface			
ion	ionic			
1	liquid			
LD	liquid water-dissolved water phase change			
т	mass			
Μ	methanol			
MEM	membrane			
MOR	methanol oxidation reaction			
mw	membrane water			
N	Naпon			
02	oxygen			
OKK	oxygen reduction reaction			
ref	reference			
n	pressure			
r na	two phase			
РЧ Л	nhase a			
sat	saturation			
T	temperature			
VL	vapor-liquid water phase change			
WV	water vapor			

In order to further improve the performance of active DMFC, a basic understanding of the gas and liquid two-phase flow in the whole DMFC is critical [29]. The visualization studies conducted by researchers showed that the carbon dioxide (CO_2) in anode channel mainly accumulates at the AFC/ADL interface, which decreases the performance of DMFC by preventing the methanol diffusion to the CL (catalyst layer). In fact, the CO_2 amount in anode channel is affected by many operating factors: methanol feed concentration [30–32], temperature [30,32], anode flow rate

[30,31,33], cell direction (vertical and horizontal) [32], channel length [34], etc. Burgmann et al. [35] investigated the appearance and evolution of bubbles in serpentine and parallel channels based on time-resolved measurement and showed the progress of CO₂ bubbles formation, blockage of cross-sectional channel and removal out of channel by slug. And a similar evolutionary process of bubbles was also found by Liao et al. [30].

Moreover, given the high cost and limitations in conducting visualization experiments, model development is also a popular Download English Version:

https://daneshyari.com/en/article/7046016

Download Persian Version:

https://daneshyari.com/article/7046016

Daneshyari.com