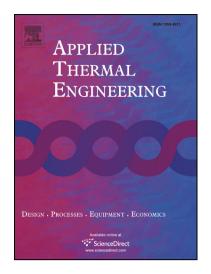
## Accepted Manuscript

Research Paper

A novel low-resistance tee of ventilation and air conditioning duct based on energy dissipation control

Ran Gao, Zhiyu Fang, Angui Li, Kaikai Liu, Zhigang Yang, Beihua Cong


PII: S1359-4311(17)36033-7

DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.107

Reference: ATE 11628

To appear in: Applied Thermal Engineering

Received Date: 23 September 2017 Revised Date: 17 December 2017 Accepted Date: 28 December 2017



Please cite this article as: R. Gao, Z. Fang, A. Li, K. Liu, Z. Yang, B. Cong, A novel low-resistance tee of ventilation and air conditioning duct based on energy dissipation control, *Applied Thermal Engineering* (2017), doi: https://doi.org/10.1016/j.applthermaleng.2017.12.107

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A novel low-resistance tee of ventilation and air conditioning duct based on energy dissipation

control

Ran Gao<sup>1\*</sup>, Zhiyu Fang<sup>1</sup>, Angui Li<sup>1</sup>, Kaikai Liu<sup>1</sup>, Zhigang Yang<sup>2</sup>, Beihua Cong<sup>3</sup>

<sup>1</sup>School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology,

Xi'an, Shaanxi 710055, P.R. China; <sup>2</sup>China Renewable Energy Engineering Institute, <sup>3</sup>Beijing, 100120,

P.R. China; <sup>3</sup>Tongtai Fire and Security Co., Ltd, Shanghai, 200023, P.R. China;

**Abstract:** The local components represented by the split-flow tee are essential parts of ventilation and air

conditioning systems in buildings. The structure of the split-flow tee has not changed in 50 years, and it

offers significant energy-saving potential. Therefore, this work introduces a novel low-resistance

split-flow tee based on energy dissipation control and engineering practice analysis. The tee's resistance

performance is compared with five other traditional tees, under different flow ratios and aspect ratios.

The effects of resistance reduction are verified by means of experiments and the existing literature.

This study demonstrates that the novel tee constantly maintains the least resistance under different flow

ratios (5:1 to 1:3) and aspect ratios (4:1 to 1:4), compared with five other traditional tee types. Moreover,

the resistance can be reduced by 42% compared with the traditional tee. The use of the novel tee reduces

energy dissipation intensity, and the energy dissipation area is pushed away from the main flow area.

**Keywords:** ventilation; air conditioning; energy conservation; split-flow tee

\* Corresponding author. Tel.: +86 13629284215; fax: +86 29 82205958.

E-mail address: gaoran@xauat.edu.cn (R. Gao).

## Download English Version:

## https://daneshyari.com/en/article/7046125

Download Persian Version:

https://daneshyari.com/article/7046125

<u>Daneshyari.com</u>