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a  b  s  t  r  a  c  t

A  Generation  Expansion  Planning  problem  with  load  uncertainty  is  formulated  based  on  joint  chance-
constrained  programming  (CCP)  and is solved  by  incorporating  sensitivity  into  iterative  algorithms.  These
algorithms  exploit  the  characteristics  of  the  system  and its  response  to load  variations.  Sensitivities  help
to classify  buses  according  to  stress  level,  and  sensitivity-based  iterative  algorithms  distinguish  each
bus  based  on  its contribution  to  the  overall  system  reliability.  The  use  of sensitivity  overcomes  some of
the  mathematical  obstacles  to  solving  joint CCP  problems  and,  in addition,  leads  to optimal  expansion
solutions  because  uncertain  loads  are  correctly  estimated.  The  IEEE  30-  and  118-bus  test  systems  are
used  to demonstrate  the proposed  algorithms,  and  the  results of  these  algorithms  are compared  with
those  of other  algorithms  for solving  the  joint  CCP  problem.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Today’s power systems, be they regulated or deregulated, are
exposed to ever more sources of uncertainty, such as the integra-
tion of renewable sources, demand participation, and generation
and transmission availability. This uncertainty and the increasing
demand for power raise new challenges for utility planners, whose
goal is to provide reliable power to consumers at the lowest possible
cost.

Generation Expansion Planning (GEP) models are used to deter-
mine the size, type, and location of the additional units required
to satisfy the forecasted demand. GEP models are often sensitive
to uncertainty, so neglecting uncertainty may  lead to unrealistic
solutions. Thus, stochastic-optimization approaches are used to
incorporate uncertainty into GEP models. A deterministic multi-
period and multi-objective GEP is solved in [18]. In [20], a GEP
model with uncertain demand is formulated and solved by using
stochastic dynamic programming. Different applications have led
to different types of stochastic-optimization models. One such
model is the recourse-based model [8] in which, in a first step,
optimal decisions are taken and, after some of the uncertainty is
resolved, a recourse is available to re-optimize. Another model is
the expected-value model, which minimizes the expected value
of the cost subject to the expected values of constraints [8,14]. Yet
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another way  to handle uncertainty in probabilistic terms is chance-
constrained programming (CCP).

The contribution of this paper is to incorporate sensitivity into
the iterative algorithms used to solve the GEP problem with load
uncertainty for a vertically integrated power system modeled by
using joint CCP. The proposed iterative algorithm distinguishes
between stressed and nonstressed buses in the system, and the
iterative updates for each bus are different. Although joint CCP has
several advantages, it is not widely used because of the mathe-
matical challenges involved. This work addresses several of those
challenges and differs from other similar algorithms [27,19] in the
way that different chance constraints are treated differently as
appropriate. The present study builds on [21], which only separated
stressed buses: herein we consider information from both stressed
and nonstressed buses.

The rest of the paper is structured as follows: Section 2
briefly describes expansion planning models and the optimization
approaches that they use, with an emphasis on the CCP approach.
Section 3 uses CCP to formulate the GEP problem with load uncer-
tainty. Section 4 discusses previous iterative procedures to solve
the CCP formulation, and Section 5 explains the improved algo-
rithms proposed herein that incorporate sensitivities. Section 6
reports and analyzes the computational results of applying the
algorithms to two  standard test systems. Section 7 concludes the
paper.

2. Background

Power system planning has become an intensive process and
the investment in utility planning is significant [22]. A survey of
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the optimization techniques used in utility planning is given in [12],
and of the several stochastic optimization techniques used to model
uncertainty, only robust optimization [6,7] and CCP explicitly aim
to achieve a prescribed reliability level. When the probability dis-
tribution of the uncertain random variable is known, CCP is a
particularly suitable optimization technique for including uncer-
tainty in the solution. Although the GEP problem contains several
sources of uncertainty, we concentrate in this work on demand
uncertainty, which is the main source of uncertainty. For power-
system demand, the probability distribution can be obtained by
using historic data.

Unlike in deterministic optimization where all the constraints
have to be satisfied, CCP allows some or all of the constraints to be
satisfied only with a given probability. It was first introduced in [1]
and has been applied extensively to a wide range of engineering,
financial, and management applications. Originally, CCP was  used
as an analytical tool for planning problems because it explicitly
incorporates risk.

Since then, CCP has been applied to power-system planning and
operation problems. A generation-planning model was  introduced
in [11], where a probabilistic reliability criterion was considered
for both discrete and continuous random generation. In [28], a CCP-
based formulation of transmission expansion planning was solved
by using a genetic algorithm. The effect of wind uncertainty in
transmission expansion planning was discussed in [30], in which
the authors modeled wind uncertainty with a probability density
function and the resulting CCP-based problem was solved by using a
genetic algorithm. In [13], a generation and transmission expansion
problem was modeled by using two-stage stochastic programming,
in which a risk factor is introduced into the objective function. The
solution algorithm was based on the minimum-variance approach
[16], which minimizes the risk in an investment project. A market-
based generation and transmission expansion planning model was
solved in [25] by using scenario-based formulation and Monte Carlo
simulation (MCS). In that work, a reduction technique was applied
to reduce the number of scenarios considered. A GEP problem for
vertically integrated systems with load uncertainty was modeled
by using CCP and solved with a modified iterative algorithm in [19];
this approach proved to have fewer iterations. CCP has also been
applied to operation and stability problems; for example, a unit-
commitment problem was modeled by using CCP in [3] and was
solved iteratively.

These previous applications of CCP to power system prob-
lems present two drawbacks: separate chance constraints are used
[11,29] where only one probabilistic constraint is relevant, and the
solution approach for joint CCP is computationally costly. Prob-
lems based on joint CCP are difficult to solve and therefore are
usually transformed into equivalent deterministic approximations,
as proposed in [2]. In the present work, these approximations and
thus the resulting iterative algorithms are improved by including
sensitivities, which leads to better solutions.

3. Generation Expansion Planning under uncertainty

The main objective in GEP is to minimize cost subject to the
operational constraints of the system. Mathematically, this can be
expressed by using a modified version of the following formulation
[11]:
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is the load connected to bus i; ps,i is the net power flow
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s,i
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are the minimum
and maximum net power flow in lines connected to bus i; ıi is
the voltage phase angle at bus i bi,j is the susceptance of the line
between buses i and j; nbus is the number of buses in the system;
wi is the binary decision variable for new generation at bus i.

The objective function (1a) is the total of investment and oper-
ation costs, the constraint (1b) is the real-power balance equation,
and Eq. (1c) is the sum of the line flows over all lines connected
to bus i. Constraints (1d)–(1f) give the operational limits for the
transmission lines and generating units. Finally, constraint (1g)
expresses the binary nature of the decision variable wi.

The constraints (1b) and (1c) are the DC power flow equations.
Although there are models for transmission network expansion
planning that enable the use of AC power flow equations [31,24]
and could arguably be used here, we  chose to use the DC formu-
lation because our algorithms are for the initial stages of planning
that are carried out several years before the actual situation, and
the DC approximation suffices for this purpose. If desired, an AC
power flow can be computed afterwards to confirm feasibility.

Note that the above formulation ignores load uncertainty. The
load represented here is the average forecasted load. The loading
level appears in Eq. (1b), so to include uncertainty in probabilistic
terms, we change constraint (1b) to
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where  ̨ is a user-defined probability threshold that represents
the confidence level (or reliability level). Traditional GEP usually
uses the loss of load expectation or the installed reserve margin
as the reliability criterion. However, it was shown in [11] that
modeling transmission-line constraints in terms of reliability crite-
ria is advantageous in GEP. If the optimization becomes infeasible
with this type of modeling and load curtailment is not allowed, a
transmission upgrade is needed in the first stage of planning. This
helps to identify the equilibrium conditions whereby the demand
is matched with installed generation and does not account for any
contingency studies. The left-hand side of Eq. (2) is a joint probabil-
ity, i.e., it is the probability of nbus events occurring simultaneously;
thus constraint (2) is a joint chance constraint [23]. This probabil-
ity can be calculated by numerical integration, but this technique
is limited by dimensionality [23] and is only possible in practice for
small problems.

A practical means to address this difficulty is to convert the
joint chance constraint (2) into a set of individual constraints. First,
observe that Eq. (2) can be reformulated as
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