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a  b  s  t  r  a  c  t

Extracting  phase  information  from  a three-phase  disturbed  signal  is  a recurrent  topic  in power  systems.
The  phase  detector  based  on  the  Clarke  transform  and the  arctangent  function  is a  widely  used  technique
to  this  end.  However,  the  nonlinear  nature  of  this  method  can  derive  in  an error  increment  in the  estimated
phase  angle  when  the input  signal  is  distorted.  These  errors  take  the  form  of oscillating  and  constant  terms
and are  not  generally  analyzed  in  the  literature.  Therefore,  this  work  presents  an  error  analysis  of  this
phase  detector  that  assesses  its  causes  and  effects.  To  do  so,  the disturbances  over  the  estimated  phase  are
modeled, the  reduction  of  the  phase  detector  performance  is described,  and  the  adverse  effects  produced
by the  absence  of the pre-filter  stage  are  discussed.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Knowing the instantaneous phase angle of a signal is essential
for the normal operation of many devices and applications, such as
AC motors control [1–3], distributed generation systems [4–8] and
power quality measurement systems [9]. This is because the preci-
sion of the method used for grid synchronization can affect systems
performance significantly. For example, in power electronics con-
verters related to distributed generation systems applications, a
poor synchronization can result in an increased current harmonics
injection and/or the injection of reactive power in an uncontrollable
manner.

For single phase systems, phase detectors based on a single mul-
tiplier and classical Phase-locked Loops (PLLs) are widely used to
obtain the instantaneous phase angle of the input signal [10,11]. On
the other hand, for three-phase systems, a commonly used method
for that task is the Clarke transform, which allows to represents the
input signal in the stationary reference frame, and the subsequent
calculation of the arctangent function. Among the applications of
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this phase detector in power systems are: synchronism systems
[12–17] and sequence detectors [18–20].

When the three-phase signal is distorted, the estimated phase
angle obtained by the Clarke transform and the arctangent function
is distorted as well, leading to a poor performance of this phase
detector. As a result, a common practice is to add filter stages to
mitigate the disturbance effects, which can be implemented either
before or after this method is applied. However, the limitations and
restrictions of these solutions are not often analyzed.

On the other hand, although there are more efficient synchro-
nization methods in the literature [7,13,17], the phase detector
based on the Clarke transform and the arctangent function is a
widely used technique due to its simplicity, mainly in industrial
applications where a simple and well-known method is preferred
over a more complex but efficient one.

As a result of the widespread use of this technique and the lack
of a formal analysis of its performance under distorted operational
conditions, in this work, the effects of disturbances on the estimated
phase angle using the Clarke transform and arctangent function
are modeled. The performance degradation of the phase detector
is described, and the adverse effects produced by the absence of
filtering before the phase detector are discussed. The generation of
a DC phase error in the estimated phase angle is investigated, since
this error cannot be mitigated by post-filtering stages, and so leads
to deteriorated performance. Finally, this work provides an analysis
tool to evaluate the convenience of use of the phase detector based

http://dx.doi.org/10.1016/j.epsr.2015.05.027
0378-7796/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.epsr.2015.05.027
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2015.05.027&domain=pdf
mailto:icarugati@fi.mdp.edu.ar
dx.doi.org/10.1016/j.epsr.2015.05.027


I. Carugati et al. / Electric Power Systems Research 127 (2015) 160–164 161

on the Clarke transform and arctangent function, by means of the
computation of the phase error.

This paper is organized as follows. Section 2 reviews the oper-
ation principle of Clarke transform. The effect of input distortion
in the phase detector based on Clarke transform and arctangent
function is characterized in Section 3. In Section 4, some meth-
ods proposed in the literature, which use this technique for grid
synchronization, are evaluated. Finally, Section 5 sets out the con-
clusions drawn.

2. Clarke transform

The Clarke transform is widely used in the literature to rep-
resent three-phase signals in the stationary reference frame [21].
In this way, the signal is modeled by a space vector whose two
components preserve the initial phase, frequency and amplitude
information with respect to the original system. As a result of
the orthogonal relationship between its components, the instan-
taneous phase angle can be easily estimated by implementing an
arctangent function.

This method assumes that the three-phase signal is composed
of three ideal sinusoidal signals with equal initial phase, amplitude
and frequency; and a constant phase difference of 120◦ between
them. Under these conditions, this phase detector accurately esti-
mates the instantaneous phase angle of a three-phase system.

However, when the three-phase signal is distorted by imbal-
ances or harmonic components, the space vector components are
also distorted, leading to poor performance of the phase detector.
Under these operation conditions, the three-phase signal can be
modeled in the stationary reference frame as:

[
v˛(t)

vˇ(t)

]
= V+1

[
cos(ϕu(k))

sin(ϕu(k))

]
+

∞∑
n = −∞
n /= 0, 1

Vn

[
cos(nϕu(k) + ϕn)

sin(nϕu(k) + ϕn)

]

(1)

where ϕu(k) is the system phase angle, V+1 is the amplitude of
the positive sequence fundamental component, n identifies the nth
harmonic, which can either be a positive (n > 1) or a negative (n < 0)
sequence; and Vn and ϕn are the amplitude and initial phase of the
nth harmonic, respectively. Note that the initial phase of the pos-
itive sequence fundamental component is equal to zero since it is
adopted as the reference of the mathematical model.

Eq. (1) is the classical mathematical model of a stationary ref-
erence frame representation of a distorted three-phase signal. To
obtain a more compact and convenient expression, ϕu(k) − ϕu(k) is
added to the argument of the second term of Eq. (1), resulting in:[

v˛(t)

vˇ(t)

]
= V+1

[
cos(ϕu(k))

sin(ϕu(k))

]
+

∞∑
n = −∞
n /= 0, 1

Vn

[
cos(nϕu(k) + ϕn + ϕu(k) − ϕu(k))

sin(nϕu(k) + ϕn + ϕu(k) − ϕu(k)

]
(2)

Operating with the second term, this equation can be rewritten
as:[

v˛(t)

vˇ(t)

]
= V+1

[
cos(ϕu(k))

sin(ϕu(k))

]
+

∞∑
n = −∞
n /= 0, 1

Vn cos((n − 1)ϕu(k) + ϕn)

[
cos(ϕu(k))

sin(ϕu(k))

]
+

∞∑
n = −∞
n /= 0, 1

Vn sin((n − 1)ϕu(k) + ϕn)

[
− sin(ϕu(k))

cos(ϕu(k))

]
(3)

and then:[
v˛(t)

vˇ(t)

]
= V�

[
cos(ϕu(k))

sin(ϕu(k))

]
+ Vı

[
− sin(ϕu(k))

cos(ϕu(k))

]
(4)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V� = V+1 +
∞∑

n = −∞
n /= 0, 1

Vn cos((n − 1)ϕu(k) + ϕn)

Vı =
∞∑

n = −∞
n /= 0, 1

Vn sin((n − 1)ϕu(k) + ϕn)

(5)

Finally, using the following trigonometric identity:

A sin(x) + B cos(x) =
√

A2 + B2 cos(x − tan−1[A/B]) (6)

and working with Eq. (4), it results in:[
v˛(t)

vˇ(t)

]
=

√
V2

� + V2
ı

[
cos(ϕu(k) + tan−1[Vı/V� ])

sin(ϕu(k) + tan−1[Vı/V� ])

]
(7)

Eq. (7) proves that distortion in three-phase signals affects the
amplitude and phase of space vector components. As a result, the
extraction of the positive sequence component requires the miti-
gation of other components in an efficient manner.

3. Effect of distortion in phase detector

This section deals with the adverse effects produced by distor-
tion in the estimated phase angle calculated by the phase detector
based on the Clarke transform and the arctangent function.

3.1. Mathematical model of phase error

Assuming a three-phase signal represented in the stationary ref-
erence frame, the estimated phase angle (ϕest) can be calculated
by:

ϕest(k) = tan−1

[
vˇ(k)

v˛(k)

]
(8)

It is worth noticing that this calculus does not contemplate the
fourth quadrant generated by v˛(k) and vˇ(k). Yet such consider-
ation seems irrelevant for the present analysis. Replacing Eq. (7) in
Eq. (8), the estimated phase results in:

ϕest(k) = tan−1

[
sin(ϕu(k) + tan−1[Vı/V� ])

cos ϕu(k) + tan−1[Vı/V� ])

]
(9)



Download English Version:

https://daneshyari.com/en/article/704629

Download Persian Version:

https://daneshyari.com/article/704629

Daneshyari.com

https://daneshyari.com/en/article/704629
https://daneshyari.com/article/704629
https://daneshyari.com

