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h i g h l i g h t s

� An improved ELM with a special structure is presented.
� ITNN is used to extract the nonlinear principal components (NPCs) from inputs.
� Two independent input subnets based on the correlation coefficient are built.
� A improved ELM integrated with the extracted NPCs (NPCs-IELM) is proposed.
� The effectiveness of NPCs-IELM is validated by modeling a complex chemical process.
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a b s t r a c t

In order to enhance the performance of extreme learning machine (ELM) in modeling complex chemical
processes, an improved ELM integrated with nonlinear principal components is proposed. Firstly, an
improved ELM (IELM) model is presented. The IELM has a special structure with two independent input
subnets: a positive correlation subnet and a negative correlation subnet. The two independent input sub-
nets are developed based on the correlation coefficient between input attributes and output attributes.
The nonlinear principal components of original input attributes are extracted using input training neural
network (ITNN). The extracted nonlinear principal components are connected to output layer nodes.
Thus, the output nodes not only connect with the positive correlation subnet and the negative correlation
subnet, but also with the extracted nonlinear principal components. Thus, an IELM integrated with non-
linear principal components (NPCs-IELM) model can be built. The effectiveness of the proposed NPCs-
IELM is verified by modeling a high density polyethylene process. Simulation results indicate that the
proposed NPCs-IELM can achieve higher accuracy and better stability.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Modern chemical plants are complicated and composed of a
large number of integrated and interdependent process units
[1,2]. There are two challenges that should be handled to ensure
high efficiency of operation and high-qualified product. Firstly,
the increasing complexity of processes requires an increasing accu-
racy of system description by using modeling technologies. Sec-
ondly, integrated and interdependent chemical units lead to high
dimensional input patterns. For the first challenge, artificial neural

networks (ANNs) are promising methods. ANNs have been widely
used in many fields, such as process modeling [3], prediction [4]
and optimization [5]. Conventionally, the gradient-based learning
algorithms are relatively slow in the learning phase and may easily
get stunk in local minimum. In order to solve this problem, training
feedforward neural networks with random weights is an alterna-
tive method [6,7]. Some randomized neural networks like random
vector functional-link net (RVFL), have been discussed [8,9].
Recently, random weights based neural networks have attracted
more and more attention. Among the random weights based neu-
ral networks, a single-hidden layer feed-forward neural network
(SLFN) named extreme learning machine (ELM) was proposed by
Huang et al. [10]. In ELM, the input weights and the biases of the
hidden layer nodes are randomly assigned, and the output weights
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are analytically determined by using generalized inverse. ELM has
also been widely applied in many fields, such as regression [11],
classification [12], approximation [13], and so on.

Some enhanced ELM models have been proposed by Huang
et al. [14,15], Deng et al. [16], He et al. [17], Sun [18] and Samet
et al. [19]. For most of the above improved algorithms, the
improved networks ignore the effect of the input attributes on
the outputs. Some of the input attributes may have a positive effect
on the outputs and some other may have a negative effect. In our
previous work, an improved extreme learning machine (IELM)
has been proposed to handle this problem [20]. The IELM has a spe-
cial structure with two separated input subnets. The two subnets
are built according to the correlation coefficient between input
attributes and output attributes. However, the original inputs are
directly connected to the output nodes, which may limit the
performance.

The second challenge is that the integrated and interdependent
of plants require more variables to be monitored due to the high
nonlinearity problem. Many researchers have been devoted to
solve this problem [21–23]. In the paper of He et al. [24], the orig-
inal inputs are connected to the output nodes. However, there is
highly nonlinear relationship between original input patterns and
output patterns. So the performance of IELM model is still limited
due to the absence of consideration about the nonlinear relation-
ship between original inputs and outputs. In this work, we further
improve the generalization performance by extracting the nonlin-
ear principal components information and then directly connect
the extracted nonlinear information to output nodes. Thus, an
improved ELM (IELM) integrated with nonlinear principal compo-
nents extraction method of ITNN is proposed for improving the
performance of ELM when dealing with the actual highly nonlinear
chemical processes in this paper. There are manymethods could be
used to extract components. The best-known method to reduce
data dimensionality is PCA depicted in Qi et al. [25]. However,
the linear PCA literally cannot efficiently deal with nonlinearly cor-
related variables. Discussed in Zhu et al. [26], Geng et al. [27] and
Reddy et al. [28], the nonlinear PCA methods, like principal curves
or principal surface, auto-associative neural network (AANN) and
ITNN, can be adopted to overcome such a bottleneck. However,
the principal curves cannot commonly be applied to all nonlinear
systems and the AANN has a relatively complicated net structure
compared with ITNN. ITNN is composed of an input layer, a de-
mapping layer, and an output layer, which is easier to train than
AANN. Based on these facts, ITNN is selected to extract the nonlin-
ear principal components.

The extracted nonlinear principal components are utilized as
the direct input attributes linked with the output layer nodes.
Finally, an IELM integrated with nonlinear principal components
(NPCs-IELM) is proposed. Different from the traditional ELM
model, the proposed model has two salient features. Firstly, the
model has two independent input subnets: a positive correlation
subnet and a negative correlation subnet. The two input subnets
are established according to the correlation coefficient between
input attributes and output attributes. Secondly, output nodes
not only receive the information from the hidden nodes but also
directly receive the information of the extracted nonlinear princi-
pal components. In order to verify the effectiveness of the proposed
model, a complex chemical processes named high density poly-
ethylene (HDPE) is selected.

The remaining parts of this paper is organized as follows: Sec-
tion 2 provides some preliminaries about methods of traditional
extreme learning machine, input training neural network and cor-
relation coefficient analysis; details of the learning algorithm and
the construction steps of the proposed NPCs-IELM are described
in Section 3; Section 4 presents the case study using the high den-
sity polyethylene process; Section 5 contains conclusions.

2. Preliminaries

A brief review of traditional ELM, ITNN and the correlation coef-
ficient analysis is presented in this section.

2.1. Extreme learning machine

For p arbitrary training samples U ¼ ðxi; tiÞ 2 ½Rm�
Rs�ði ¼ 1;2; � � � ; pÞ, the output of the ELM with k hidden layer nodes
is shown as follows:

HðxiÞ ¼
XK
k¼1

bkgðAk � xi þ bkÞ ð1Þ

where Ak ¼ ½ak1; ak2; � � � ; akm�T is the weight vector connecting the
input nodes to the kth hidden node; bk is the threshold of the kth
hidden node; bk ¼ ½bk1;bk2; � � � ;bks�T is the weight vector connecting
the kth hidden node and output nodes; Ak � xi denotes the inner pro-
duct of Ak and xi; gð�Þ is the activation function of hidden layer
nodes.

For all P samples, an equivalent compact form of Eq. (1) can be
written as follows:

Hb ¼ t ð2Þ

H ¼
gðA1 � x1 þ b1Þ ::: gðAk � x1 þ bkÞ
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2
664

3
775

p�k

b ¼ ½bT
1; :::;b

T
k �

T

k�s; t ¼ ½tT1; :::; tTs �
T
p�s ð3Þ

where H is called as hidden layer output matrix; b is the weight vec-
tor connecting the hidden nodes and output nodes; t is the desired
output value.

In ELM, the learning parameters Ak and bk; k ¼ 1; � � � ;K are ran-
domly generated. The output nodes are assigned with a linear sum
function. Thus, the output weights can be analytically determined
by finding a least-square solution as follows:

b̂ ¼ HyT ð4Þ

where Hy is the Moore Penrose generalized inverse of the hidden
layer output matrix H. The topological structure of ELM is shown
in Fig. 1.

2.2. Input training neural network

Unlike other feed-forward neural networks, the inputs of the
ITNN subnet are not given. Both the weights of ITNN and the input
values reproducing the data are adjusted as accurately as possible.
For each input vector, it is adjusted to minimize the error between
the corresponding output of ITNN and the expected value. After the
subnet and the inputs are properly adjusted, we can gain a matrix
and a de-mapping neural network model. The matrix X can be
viewed as nonlinear principal components. Thus the reduction of
high-dimensional data can be fulfilled through training a de-
mapping network and simultaneously the input layer. The struc-
ture of ITNN is presented in Fig. 2.

The algorithm of ITNN is illustrated as follows. Supposed that N

arbitrary training samples fðxi; tiÞgNi¼1 are available, where xi con-
sisting of m elements is the m -dimensional vector of the ith sam-
ple, and ti consisting of n elements is the n -dimension vector of the
ith output. Each input vector ½nN1; nN2; � � � ; nNp�, where the number
of the samples is N, and p is the number of the extracted nonlinear
principal components, is adjusted to minimize the error between
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