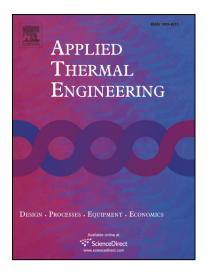
Accepted Manuscript

Snow and Ice Melting Properties of Self-healing Asphalt Mixtures with Induction Heating and Microwave Heating

Yihan Sun, Shaopeng Wu, Quantao Liu, Jianfu Hu, Yuan Yuan, Qunshan Ye


PII: S1359-4311(16)33548-7

DOI: https://doi.org/10.1016/j.applthermaleng.2017.10.050

Reference: ATE 11248

To appear in: Applied Thermal Engineering

Received Date: 22 November 2016 Revised Date: 30 August 2017 Accepted Date: 9 October 2017

Please cite this article as: Y. Sun, S. Wu, Q. Liu, J. Hu, Y. Yuan, Q. Ye, Snow and Ice Melting Properties of Self-healing Asphalt Mixtures with Induction Heating and Microwave Heating, *Applied Thermal Engineering* (2017), doi: https://doi.org/10.1016/j.applthermaleng.2017.10.050

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Snow and Ice Melting Properties of Self-healing Asphalt Mixtures with

Induction Heating and Microwave Heating

Yihan Sun^{1,2}, Shaopeng Wu^{1*}, Quantao Liu¹, Jianfu Hu², Yuan Yuan², Qunshan Ye³

¹State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan

430070, China

²Zhejiang Provincial Institute of Communications Planning, Design & Research, Hangzhou 310015,

³Key Laboratory of Road Structure and Material of Ministry of Transport (Changsha), Changsha

University of Science & Technology, Changsha, China.

Abstract

In this paper, the snow and ice melting properties of self-healing asphalt mixtures with induction

heating and microwave heating were investigated. The self-healing performance of the mixtures during

ice melting process was measured with cyclic three-point bending test as well. The results indicated that

the snow and ice melting performance of self-healing asphalt mixtures with appropriate heating

techniques was remarkable. The average melting velocity of ice melting was improved from less than

1g/min (previous researches) to more than 10g/min, while the average snow melting velocity of steel

fiber modified asphalt mixture and steel slag asphalt mixture with microwave heating could reach

53.9g/min and 48.5g/min respectively. The water from melted ice/snow played a major role in the

melting process of snow with microwave heating. However, the moisture from melted ice/snow on the

surfaces of crack prevented the thermal healing of asphalt mixtures. It is recommended that another

heating process after the melting process should be applied to promote the healing of cracks as well as

to prevent the melted snow and ice water on the pavement from freezing.

Key words: self-healing; asphalt mixtures; snow and ice melting; induction heating; microwave

heating; energy efficiency.

1 Introduction

As is known, snowfall, sleet, and freezing rain were big problems for road traffic safety in cold regions

*Corresponding author:

E-mail addresses: wusp@whut.edu.cn

Telephone: +86 138 0717 6062

1

Download English Version:

https://daneshyari.com/en/article/7046543

Download Persian Version:

https://daneshyari.com/article/7046543

<u>Daneshyari.com</u>