
Accepted Manuscript

Hybrid experimental/modelling methodology for identifying the convective heat transfer coefficient in cryogenic assisted machining

P. Lequien, G. Poulachon, J.C. Outeiro, J. Rech

PII: DOI: Reference:	S1359-4311(17)32697-2 http://dx.doi.org/10.1016/j.applthermaleng.2017.09.054 ATE 11111
To appear in:	Applied Thermal Engineering
Received Date: Revised Date: Accepted Date:	21 April 20174 September 201711 September 2017

Please cite this article as: P. Lequien, G. Poulachon, J.C. Outeiro, J. Rech, Hybrid experimental/modelling methodology for identifying the convective heat transfer coefficient in cryogenic assisted machining, *Applied Thermal Engineering* (2017), doi: http://dx.doi.org/10.1016/j.applthermaleng.2017.09.054

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Hybrid experimental/modelling methodology for identifying the convective heat transfer coefficient in cryogenic assisted machining

P. Lequien¹, G. Poulachon¹, J.C. Outeiro¹, J. Rech²

¹Arts et Metiers, LaBoMaP, 71250 Cluny, UBFC, France

²Univ Lyon, ENISE LTDS, CNRS UMR5513, 58 Rue Jean Parot, 42023 Saint-Etienne cedex 2, France

HIGHLIGHTS

- Investigation of heat transfer coefficient between LN₂ and titanium alloy
- Influence of LN₂ projection parameters on temperature distribution in the workpiece
- Determination of h (W/m².K) with temperature measurement and CFD simulations
- Results highly depends on LN₂ projection parameters (pressure and nozzle diameter)
- Mathematical development for predicting convective heat transfer coefficient

ARTICLE INFO

Article History:

Keywords: Liquid nitrogen Cryogenic machining Convective heat transfer coefficient Ti6Al4V

ABSTRACT

Cryogenic assisted machining has become a very popular method in the metal cutting industry, as it enables the cooling of a cutting zone for improving surface integrity or/and tool life without contaminating the machined part. However, the thermal interaction between liquid nitrogen (LN₂) and a hot cutting zone remains unclear. The main objective of this work is to analyse the thermal phenomena occurring at the LN₂ jet/workpiece interface. The nitrogen liquid/gas phase proportion has a significant influence on the heat transfer. To determine the influence of LN_2 jet parameters on the convective heat transfer coefficient, a model based on the projection of an LN₂ jet on a workpiece instrumented with thermocouples is proposed. The most influential parameters of the thermal distribution and heat transfer coefficient are LN₂ pressure, nozzle diameter, projection angle and the distance between the workpiece nozzle and the surface.

1 INTRODUCTION

The heat generated during machining operations is particularly significant when cutting difficultto-cut materials such as Ti6Al4V alloy because of its poor thermal conductivity [1] and its high friction coefficient combined with strong adhesion [2]. Thus, tool wear is accelerated, and the surface integrity becomes deteriorated. Download English Version:

https://daneshyari.com/en/article/7046601

Download Persian Version:

https://daneshyari.com/article/7046601

Daneshyari.com