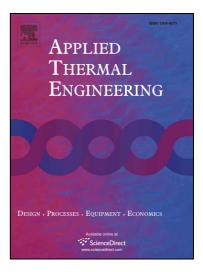
Accepted Manuscript

Performance analysis of a modified zeotropic mixture (R290/R600) refrigeration cycle with internal subcooler for freezer applications

Qi Chen, Jianlin Yu, Gang Yan


PII: \$1359-4311(16)31263-7

DOI: http://dx.doi.org/10.1016/j.applthermaleng.2016.07.132

Reference: ATE 8730

To appear in: Applied Thermal Engineering

Received Date: 12 May 2016 Revised Date: 6 July 2016 Accepted Date: 18 July 2016

Please cite this article as: Q. Chen, J. Yu, G. Yan, Performance analysis of a modified zeotropic mixture (R290/R600) refrigeration cycle with internal subcooler for freezer applications, *Applied Thermal Engineering* (2016), doi: http://dx.doi.org/10.1016/j.applthermaleng.2016.07.132

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Performance analysis of a modified zeotropic mixture (R290/R600) refrigeration cycle with internal subcooler for freezer applications

Qi Chen, Jianlin Yu*, Gang Yan

Department of Refrigeration & Cryogenic Engineering, School of Energy and Power Engineering,

Xi'an Jiaotong University, Xi'an 710049, China

Abstract

This study presents a modified vapor compression refrigeration cycle (MVRC) using zeotropic mixture R290/R600 for freezers. In the MVRC, an internal subcooler with additional bypass tube is introduced to enhance the overall system performance. Energetic and exergetic analysis methods are introduced to theoretically evaluate the system operating performance, and compared with the performance of the traditional vapor compression refrigeration cycle (TVRC). The results show that the MVRC yields higher refrigeration coefficient of performance (COP), volumetric cooling capacity and exergy efficiency than the TVRC. Under the given condition, the COP, volumetric cooling capacity and exergy efficiency of MVRC could be improved by up to an average of 8.9%, 12.4% and 10.4%. Moreover, COP and exergy efficiency of MVRC increases with the rising bypass coefficient of the refrigerant. The performance characteristics of the proposed novel cycle demonstrate the potential advantages for application in freezer systems.

Keywords: Freezers; Internal subcooler; Performance improvement; Zeotropic mixture;

^{*} Corresponding author. Tel: +86-29-82668738. Fax: +86-29-82668725. Email: yujl@mail.xjtu.edu.cn

Download English Version:

https://daneshyari.com/en/article/7046672

Download Persian Version:

https://daneshyari.com/article/7046672

Daneshyari.com