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a  b  s  t  r  a  c  t

This  paper  addresses  the  solvability  of  power  flow  for AC–DC  system  with  sequential  methods.  As  one
of  most  wieldy  used  power  flow  analysis  methods  for AC–DC  systems,  this  method  solves  the  AC and
HVDC  systems  iteratively.  This  paper  shows  that  the solvability  of  the  problem  depends  on  a linearized
coefficient  matrix  G, which  integrated  the  information  of  the  network  and  HVDC  control  modes.  To
analyze  the  singularity  of  G, all of  the  physically  feasible  combinations  of the  control  modes  are  classified
into  seven  categories.  The  conditions  for the  singularity  of  G are  analyzed  in  detail.  Systematical  conditions
for  solvability  of  power  flow  with  sequential  methods  for AC–DC  systems  are  derived  mathematically.
Some  numerical  studies  validate  the  proposed  theoretical  results.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The power flow calculation methods for the AC–DC power sys-
tems can be generally classified into two categories [1–5]: the
simultaneous methods and the sequential methods. Different from
the simultaneous methods, the sequential methods are conve-
nient to integrate the HVDC system calculation into existing AC
power flow calculation programs with a little modification. As a
result, various sequential methods have been proposed [6,7] and
widely used. The pioneer work of sequential methods is based on
the completely decoupled AC and HVDC subsystems [8–10]. Some
improved sequential methods have been proposed by modifying
the iteration matrix for the reactive power in the decoupled method
or by modifying the Jacobian matrix for the Newton method [11].
Recent research [12] shows that the robustness of the HVDC sub-
system’s power flow calculation plays an important role in the
convergence of the AC–DC system power flow calculation.

The linearized method might be the most widely used AC–DC
power flow analysis method [13]. It is an extension of the 3-
equation method for a 2-terminal HVDC system [2].  To use this
method, the control modes and the converter characteristics are
employed to construct the network equations first. By a series of
mathematical transformations, a set of linear equations, i.e., GX = y,
is derived. By solving these equations, the power flow can be solved.

∗ Corresponding author. Tel.: +86 10 80798449.
E-mail address: chongru.liu@ncepu.edu.cn (C. Liu).

Generally, the solvability of this method depends on the charac-
teristics of G. In this paper, the singularity of the coefficient matrix
G for HVDC subsystems is analyzed in depth and the conditions of
singularity are proved mathematically. Conditions for singularity
of the coefficient matrix are proposed.

The remaining parts of this paper are organized as follows. Sec-
tion 2 describes the models of HVDC systems for the linear method
in AC–DC power flow calculation. Section 3 discusses the singu-
larity of the matrix G and gives the theoretical proof. Section 4
shows the numerical results. Section 5 draws the conclusions of this
paper.

2. Models of the HVDC system in linear method for power
flow calculation

2.1. Characteristics of the converter

The schematic diagram for the connection between AC and
HVDC subsystems is illustrated in Fig. 1.

For the AC–DC hybrid power systems, the joint buses which
connecting the converter are the boundary of the AC and HVDC
subsystems. The Vac is the root mean square (RMS) value of line-
to-line voltage of the joint bus. ϕ is the power factor angle. Pd is the
active power with the positive direction shown in Fig. 1. QAC–HVDC is
the reactive power exchanged between AC and HVDC subsystems.
The Vac and ϕ are calculated through AC subsystems and used in
the HVDC subsystems. The Pd and QAC–HVDC are calculated through
HVDC system and then passed to the AC subsystems. The interface
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Fig. 1. The connection between AC and HVDC subsystems.

Fig. 2. The interface between AC and HVDC subsystems calculation.

between the calculation of AC and HVDC subsystems are shown in
Fig. 2.

The mathematical model of the converter characteristics is:

Vd0 = 3
√

2
�

BTVac

Vd = Vd0 cos � − 3
�

XcIdB · �

cos ϕ = kVd

Vd0
· �

Pd = VdId

QAC–HVDC = Pd tan ϕ

(1)

where T is the converter transformer ratio, B is the number of con-
verter bridges, Xc is the commutating reactance, Vd is the direct
voltage, Vd0 is the ideal no-load direct voltage, Id is the direct cur-
rent with the same positive direction as Pd, � is the firing angle of
the rectifier or the extinction angle of the inverter, � is 1 for rectifier
and −1 for inverter, k = 0.995. k indicates the effect of the overlap
angle. k would be 1 if the error caused by the overlap angle can be
ignored.

2.2. Models of the controllers

The normal control modes for converters are: constant current
control (CC), constant voltage control (CV), constant power control
(CP) and constant firing angle (CA). According to the characteris-
tics of converters and the various control modes, the models of the
controllers for power flow calculation are [2]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Vdi = Vsp
di

i ∈ ˝CV

Idi = Psp
di

Vdi
i ∈ ˝CP

Idi = Isp
di

i ∈ ˝CC

Idi =
√

2VaciTi

Xci · �i
· cos �sp

i
− �

3XciBi · �i
· Vdi i ∈ ˝CA

(2)

where superscript sp means that the value is a preset value for the
control mode, i ∈ ˝CV represents that the ith converter is under the
CV control mode, i ∈ ˝CP represents that the ith converter is under
the CP control mode, i ∈ ˝CC represents that the ith converter is
under the CC control mode, i ∈ ˝CA represents that the ith converter
is under the CA control mode.

2.3. Models of network equations of HVDC subsystems

The HVDC subsystem network equation is:∑
j

gdijVdj = Idi (3)

where gdij is the correspond element in the node admittance matrix
of the HVDC system. Substituting (3) with (2),  we  obtain,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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The matrix form is [3]:⎡
⎢⎢⎢⎢⎣
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Rewritten it in a compact form as

GXdc = ydc (6)

where matrix I is the identity matrix, subscript V, P, I and A indi-
cate control mode as CV,  CP,  CC and CA,  respectively, GVP means the
admittance sub-matrix related to those converters with CV or CP
controller and the other sub-matrices are similar, V SP

dV is a vector
consisting of V sp

di
, i ∈ ˝CV . PSP

dP is a vector consisting of Psp
di

, i ∈ ˝CP ,

ISP
dI is a vector consisting of Isp

di
, i ∈ ˝CC , ASP

dA is a vector consisting of
cos �sp

di
, i ∈ ˝CIA(CEA), UdP = diag {VdPi, i ∈ ˝CP}. And,
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}
, i ∈ ˝CIA(CEA) (7)

G′
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{
�
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}
(8)

If there is no CP controller, (6) is linear. Xdc can be solved directly
by

Xdc = G−1ydc (9)

Due to the UdP, under CP control modes, the right vector of (5)
is unknown. Physically, UdP is the voltage of the converter under
CP control mode. In a system, the number of related equations is
limited, and only an equation set with small dimension should be
solved. For small-scale problems, the efficiency of the Gauss–Seidel
method is higher than Newton’s method. Therefore, usually, the
Gauss–Seidel method is employed to solve the rows related to UdP.
Assuming that R = G−1, we have,

VdP = RPP(U−1
dP

PSP
dP − GPV VSP

dV ) + RPV (−GVV VSP
dV ) + RPI(ISP

dI − GIV VSP
dV )

+ RPA(DASP
dA − GAV VSP

dV ) = RPPU−1
dP

PSP
dP + � (10)

where � can be calculated by the parameter of the HVDC system.
Because the number of the converters under CP control modes is
small, the Gauss–Seidel method is faster than Newton–Raphson
method to solve VdP.

By submitting the right vector in (5) with the value of VdP, the
Xdc can be solved by using (9).
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